【題目】某游戲棋盤上標(biāo)有第、、、、站,棋子開始位于第站,選手拋擲均勻硬幣進(jìn)行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時(shí),游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.
(1)當(dāng)游戲開始時(shí),若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請(qǐng)分析這個(gè)游戲是否公平.
【答案】(1)分布列見解析,數(shù)學(xué)期望;(2)見解析;(3)游戲不公平.
【解析】
(1)由題意得出隨機(jī)變量的可能取值有、、、,求出相應(yīng)的概率,由此可得出隨機(jī)變量的分布列,并計(jì)算出隨機(jī)變量的數(shù)學(xué)期望;
(2)棋子要到第站,分兩種情況討論:一是由第站跳站得到,二是由第站跳站得到,可得出,變形后可得出結(jié)論;
(3)根據(jù)(2)中的的遞推公式得出和的大小關(guān)系,從而得出結(jié)論.
(1)由題意可知,隨機(jī)變量的可能取值有、、、,
,,
,.
所以,隨機(jī)變量的分布列如下表所示:
所以,;
(2)依題意,當(dāng)時(shí),棋子要到第站,有兩種情況:
由第站跳站得到,其概率為;
可以由第站跳站得到,其概率為.
所以,.
同時(shí)減去得;
(3)依照(2)的分析,棋子落到第站的概率為,
由于若跳到第站時(shí),自動(dòng)停止游戲,故有.
所以,即最終棋子落在第站的概率大于落在第站的概率,游戲不公平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)討論在其定義域上的單調(diào)性;
(2)設(shè),m,n分別為的極大值和極小值,若S=m-n,求S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的準(zhǔn)線經(jīng)過點(diǎn).
(1)求拋物線的方程;
(2)設(shè)是原點(diǎn),直線恒過定點(diǎn),且與拋物線交于,兩點(diǎn),直線與直線,分別交于點(diǎn),.請(qǐng)問:是否存在以為直徑的圓經(jīng)過軸上的兩個(gè)定點(diǎn)?若存在,求出兩個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列1、1、2、1、2、4、1、2、4、8、1、2、4、8、16、…,其中第一項(xiàng)是,接下來的兩項(xiàng)是、,再接下來的三項(xiàng)是、、,以此類推,若且該數(shù)列的前項(xiàng)和為2的整數(shù)冪,則的最小值為( )
A.440B.330C.220D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是非零實(shí)常數(shù))滿足且方程有且僅有一個(gè)實(shí)數(shù)解.
(1)求的值
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍
(3)在直角坐標(biāo)系中,求定點(diǎn)到函數(shù)圖像上的任意一點(diǎn)的距離的最小值,并求取得最小值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)取何值時(shí),方程()無解?有一解?有兩解?有三解?
(2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請(qǐng)選擇適當(dāng)?shù)奶骄宽樞,研究函?shù)的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為,點(diǎn)M的極坐標(biāo)為,若直線l過點(diǎn)P,且傾斜角為,圓C以M點(diǎn)為圓心,4為半徑.
求直線l和圓C的極坐標(biāo)方程;
直線l與x軸y軸分別交于A,B兩點(diǎn),Q為圓C上一動(dòng)點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線的斜率為2的切線方程;
(2)證明:;
(3)確定實(shí)數(shù)的取值范圍,使得存在,當(dāng)時(shí),恒有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com