【題目】在△ABC中,A,B,C的對(duì)邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項(xiàng).
(1)求∠B的大。
(2)若a+c= ,求△ABC的面積.

【答案】
(1)解:∵bcosB是acosC,ccosA的等差中項(xiàng),

∴acosC+ccosA=2bcosB,

由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,

即sin(A+C)=2sinBcosB,

∵A+C=π﹣B,0<B<π,

∴sin(A+C)=sinB≠0,

∴cosB= ,B=


(2)解:由B= ,得 = ,

,

∴ac=2,


【解析】(1)利用等差中項(xiàng)的性質(zhì),知acosC+ccosA=2bcosB,由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,由此結(jié)合三角函數(shù)的性質(zhì)能夠求出∠B.(2)由(1)知B= ,利用余弦定理得到 = ,再利用三角形面積公式 ,能求出△ABC的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e 的解集是(
A.(ln2,+∞)
B.(2ln2,+∞)
C.(﹣∞,ln2)
D.(﹣∞,2ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (x>0),觀察:
f1(x)=f(x)=
f2(x)=f(f1(x))=
f3(x)=f(f2(x))=
f4(x)=f(f3(x))=

根據(jù)以上事實(shí),當(dāng)n∈N*時(shí),由歸納推理可得:fn(1)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓C 的左、右焦點(diǎn),點(diǎn) 在橢圓上,且 軸,的周長(zhǎng)為6.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)E,F是橢圓C上異于點(diǎn)的兩個(gè)動(dòng)點(diǎn),如果直線PE與直線PF的傾斜角互補(bǔ),證明:直線EF的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知點(diǎn)A(-1,-2),B(1,3),P為x軸上的一點(diǎn),求|PA|+|PB|的最小值;

(2)已知點(diǎn)A(2,2),B(3,4),P為x軸上一點(diǎn),求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an和Sn滿足:4Sn=(an+1)2 (n=1,2,3……),

(1)求{an}的通項(xiàng)公式;(2)設(shè)bn ,求{bn}的前n項(xiàng)和Tn

(3)在(2)的條件下,對(duì)任意n∈N*,Tn都成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在路邊安裝路燈,燈柱的高為米,路寬為23米,燈桿與燈柱角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直,請(qǐng)你建立適當(dāng)直角坐標(biāo)系,解決以下問(wèn)題:

(1)當(dāng)

(2)且燈罩軸線正好通過(guò)道路路面的中線時(shí),求燈桿的長(zhǎng)為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1:y2=2px(p>0)的焦點(diǎn)為F,拋物線上存在一點(diǎn)G到焦點(diǎn)的距離為3,且點(diǎn)G在圓C:x2+y2=9上. (Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2 =1(m>n>0)的一個(gè)焦點(diǎn)與拋物線C1的焦點(diǎn)重合,且離心率為 .直線l:y=kx﹣4交橢圓C2于A、B兩個(gè)不同的點(diǎn),若原點(diǎn)O在以線段AB為直徑的圓的外部,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b為正實(shí)數(shù),函數(shù)f(x)=ax3+bx+2x在[0,1]上的最大值為4,則f(x)在[﹣1,0]上的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案