已知P是以F1、F2為焦點(diǎn)的橢圓=1(a>b>0)上的一點(diǎn),=0,tan∠PF1F2=,則此橢圓的離心率為(    )

A.             B.                C.                D.

解析:本題考查橢圓定義及三角形正弦定理的靈活應(yīng)用;據(jù)題意在三角形PF1F2中,由=0可知此三角形為直角三角形,由正弦定理知

=2c(1)

由橢圓定義及三角公式可知:|PF1|+|PF2|=2a,tan∠PF1F2=sin∠PF1F2=,cos∠PF2F1=,即sin∠PF1F2+sin∠PF2F1=sin∠PF1F2+cos∠PF2F1=故(1)式即為=2c,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是以F1,F(xiàn)2為焦點(diǎn)的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點(diǎn),若PF1⊥PF2,tan∠PF1F2=
1
2
,則此橢圓的離心率為( 。
A、
1
2
B、
2
3
C、
1
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是以F1,F(xiàn)2為焦點(diǎn)的雙曲線
x2
a2
-
y2
b2
=1
上的一點(diǎn),若
PF1
PF2
=0,tan∠PF1F2=2,則此雙曲線的離心率為( 。
A、
5
B、5
C、2
5
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是以F1,F(xiàn)2為焦點(diǎn)的雙曲線
x2
a2
-
y2
b2
=1
上一點(diǎn),
PF1
PF2
=0
,且tan∠PF1F2=
1
2
,則此雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省聊城市高三上學(xué)期期末考試數(shù)學(xué) 題型:選擇題

已知P是以F1、F2為焦點(diǎn)的橢圓   則該橢圓的離心率為                                      (    )

    A.             B.             C.             D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案