已知動圓過定點(1,0),且與直線x=-1相切.
(1)求動圓的圓心軌跡C的方程;
(2)是否存在直線l,使l過點(0,1),并與軌跡C交于P,Q兩點,且滿足
OP
OQ
=0
?若存在,求出直線l的方程;若不存在,說明理由.
(1)如圖,設M為動圓圓心,F(xiàn)(1,0),
過點M作直線x=-1的垂線,垂足為N,由題意知:|MF|=|MN|
即動點M到定點F與到定直線x=-1的距離相等,
由拋物線的定義知,點M的軌跡為拋物線,
其中F(1,0)為焦點,x=-1為準線,
∴動圓圓心的軌跡方程為y2=4x;
(2)由題可設直線l的方程為x=k(y-1)(k≠0)
x=k(y-1)
y2=4x
得y2-4ky+4k=0;△=16k2-16k>0⇒k<0ork>1
設P(x1,y1),Q(x2,y2),則y1+y2=4k,y1y2=4k
OP
OQ
=0
,即x1x2+y1y2=0⇒(k2+1)y1y2-k2(y1+y2)+k2=0,
解得k=-4或k=0(舍去),
∴直線l存在,其方程為x+4y-4=0.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A(-1,0),B(2,0),動點M(x,y)滿足
|MA|
|MB|
=
1
2
,設動點M的軌跡為C.
(1)求動點M的軌跡方程,并說明軌跡C是什么圖形;
(2)求動點M與定點B連線的斜率的最小值;
(3)設直線l:y=x+m交軌跡C于P,Q兩點,是否存在以線段PQ為直徑的圓經(jīng)過A?若存在,求出實數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓(x+1)2+y2=16,圓心為C(-1,0),點A(1,0),Q為圓上任意一點,AQ的垂直平分線交CQ于點M,則點M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:已知線段AB=4,動圓O1與線段AB相切于點C,且AC-BC=2
2
,過點A,B分別作⊙O1的切線,兩切線相交于點P,且P、O1均在AB的同側.
(Ⅰ)建立適當坐標系,當O1位置變化時,求動點P的軌跡E方程;
(Ⅱ)過點B作直線交曲線E于點M、N,求△AMN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,梯形ABCD中,ABCD,且AB⊥平面α,AB=2BC=2CD=4,點P為α內一動點,且∠APB=∠DPC,則P點的軌跡為( 。
A.直線B.圓C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四棱錐P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD為梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,滿足上述條件的四棱錐的頂點P的軌跡是( 。
A.圓的一部分B.橢圓的一部分
C.球的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的射影,M為PD上一點,且|MD|=
4
5
|PD|
(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程
(Ⅱ)求過點(3,0)且斜率
4
5
的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,動點P和點M(-2,0)、N(2,0)滿足|
MN
|•|
MP
|+
MN
NP
=0
,則動點P(x,y)的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案