(本題滿(mǎn)分12分)已知橢圓過(guò)點(diǎn),且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓的左、右頂點(diǎn),直線(xiàn)軸交于點(diǎn),點(diǎn)是橢圓上異于
的動(dòng)點(diǎn),直線(xiàn)分別交直線(xiàn)兩點(diǎn).證明:恒為定值.
(Ⅰ). (Ⅱ)為定值.證明見(jiàn)解析。
本試題主要是考出了橢圓方程的求解,橢圓的幾何性質(zhì),直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用的綜合考查,體現(xiàn)了運(yùn)用代數(shù)的方法解決解析幾何的本質(zhì)的運(yùn)用。
(1)首先根據(jù)題意的幾何性質(zhì)來(lái)表示得到關(guān)于a,b,c的關(guān)系式,從而得到其橢圓的方程。
(2設(shè)出直線(xiàn)方程,設(shè)點(diǎn)P的坐標(biāo),點(diǎn)斜式得到AP的方程,然后聯(lián)立方程組,可知借助于韋達(dá)定理表示出長(zhǎng)度,進(jìn)而證明為定值。
(Ⅰ)解:由題意可知,,,
解得.       …………4分
所以橢圓的方程為.     …………5分
(Ⅱ)證明:由(Ⅰ)可知,,.設(shè),依題意
于是直線(xiàn)的方程為,令,則.
.              …………7分
又直線(xiàn)的方程為,令,則,
.              …………9分
 …………11分
上,所以,即,代入上式,
,所以為定值.         …………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

從橢圓 上一點(diǎn)P向x軸作垂線(xiàn),垂足恰為左焦點(diǎn)F1,又點(diǎn)A是橢圓與x軸正半軸的交點(diǎn),點(diǎn)B是橢圓與y軸正半軸的交點(diǎn),且AB//OP,,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分13分)
已知直線(xiàn)與橢圓相交于A、B兩點(diǎn).
(Ⅰ)若橢圓的離心率為,焦距為2,求線(xiàn)段AB的長(zhǎng);
(Ⅱ)若向量與向量互相垂直(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離心率 時(shí),求橢圓的長(zhǎng)軸長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓長(zhǎng)軸上有一點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為:3+2,3-2
(1)求橢圓的方程;
(2)如果直線(xiàn)x=t(teR)與橢圓相交于A(yíng),B,若C(-3,0),D(3,0),證明直線(xiàn)CA與直線(xiàn)
BD的交點(diǎn)K必在一條確定的雙曲線(xiàn)上;
(3)過(guò)點(diǎn)Q(1,0 )作直線(xiàn)l(與x軸不垂直)與橢圓交于M,N兩點(diǎn),與y軸交于點(diǎn)R,、若
,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.設(shè)點(diǎn)P是橢圓上的一點(diǎn),點(diǎn)M、N分別是兩圓:上的點(diǎn),則的最小值、最大值分別為(    )
A.6,8B.2,6
C.4,8D.8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知點(diǎn)在以坐標(biāo)軸為對(duì)稱(chēng)軸的橢圓上,點(diǎn)到兩焦點(diǎn)的距離分別為4和2,過(guò)點(diǎn)作焦點(diǎn)所在軸的垂線(xiàn),它恰好過(guò)橢圓的一個(gè)焦點(diǎn),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知水平地面上有一半徑為4的籃球(球心),在斜平行光線(xiàn)的照射下,其陰影為一
橢圓(如圖),在平面直角坐標(biāo)系中,為原點(diǎn),所在直線(xiàn)為軸,設(shè)橢圓的方程為
,籃球與地面的接觸點(diǎn)為,且,則橢圓的離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的左、右焦點(diǎn)分別為,下頂點(diǎn)為,點(diǎn)是橢圓上任一點(diǎn),圓是以為直徑的圓.
⑴當(dāng)圓的面積為,求所在的直線(xiàn)方程;
⑵當(dāng)圓與直線(xiàn)相切時(shí),求圓的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與雙曲線(xiàn)有相同的焦點(diǎn), 則m的值為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案