精英家教網 > 高中數學 > 題目詳情

【題目】將正分割成個全等的小正三角形(圖1,圖2分別給出了的情形),在每個三角形的頂點各放置一個數,使位于的三邊及平行于某邊的任一直線上的數(當數的個數不少于3時)都分別依次成等差數列,若頂點處的三個數互不相同且和為1,記所有頂點上的數的和為,已知,則(用含的式子表達)__________

【答案】

【解析】

作為一個填空題,根據等差數列性質,依次分析,數據特點,根據規(guī)律觀察歸納出

各點放的數用該點的字母表示,

由題,根據等差數列性質可得:

時,,三個式子相加得:

,;

時,,三個式子相加得:

,

由根據等差中項性質:,三個式子相加可得:,所以,

時,依據等差數列等差中項性質:

,即,

同理,

所以,

,

由于每條與三邊平行的線上的點上數據成等差數列:

所以

,

可以分析當時,各邊上的點數據之和為,

內部的點個數為,點上數據之和為,

所以,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點在以為直徑的圓上,,,平面平面.

1)證明:平面.

2)設點是線段(不含端點)上一動點,當三棱錐的體積為1時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調查得到這款手機上市時間(第周)和市場占有率()的幾組相關數據如下表:

1)根據表中的數據,用最小二乘法求出關于的線性回歸方程;

2)根據上述線性回歸方程,預測在第幾周,該款旗艦機型市場占有率將首次超過(最后結果精確到整數).

參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,,點、分別在線段、上,且,其中,連接,延長的延長線交于點,連接

(Ⅰ)求證:平面

(Ⅱ)若時,求二面角的正弦值;

(Ⅲ)若直線與平面所成角的正弦值為時,求值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數學建模課上,老師給大家?guī)砹艘粍t新聞:“2019816日上午,423米的東莞第一高樓民盈國貿中心2號樓(以下簡稱國貿中心)正式封頂,隨著最后一方混凝土澆筑到位,標志著東莞最高樓紀錄誕生,由東莞本地航母級企業(yè)民盈集團刷新了東莞天際線,比之前的東莞第一高樓臺商大廈高出134.”在同學們的驚嘆中,老師提出了問題:國貿中心真有這么高嗎?我們能否運用所學知識測量驗證一下?一周后,兩個興趣小組分享了他們各自的測量方案.

第一小組采用的是兩次測角法:他們在國貿中心隔壁的會展中心廣場上的點測得國貿中心頂部的仰角為,正對國貿中心前進了米后,到達點,在點測得國貿中心頂部的仰角為,然后計算出國貿中心的高度(如圖).

第二小組采用的是鏡面反射法:在國貿中心后面的新世紀豪園一幢11層樓(與國貿中心處于同一水平面,每層約3米)樓頂天臺上,進行兩個操作步驟:①將平面鏡置于天臺地面上,人后退至從鏡中能看到國貿大廈的頂部位置,測量出人與鏡子的距離為米;②正對國貿中心,將鏡子前移米,重復①中的操作,測量出人與鏡子的距離為.然后計算出國貿中心的高度(如圖).

實際操作中,第一小組測得米,,,最終算得國貿中心高度為;第二小組測得米,米,米,最終算得國貿中心高度為;假設他們測量者的眼高都為.

1)請你用所學知識幫兩個小組完成計算(參考數據:,,答案保留整數結果);

2)你認為哪個小組的方案更好,說出你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)當時,不等式恒成立,求實數的取值范圍;

2)已知函數,,如果函數有兩個極值點、,求證:.(參考數據:,,為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】軍訓時,甲、乙兩名同學進行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環(huán)數之和作為該場比賽的成績.數學老師將甲、乙兩名同學的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個結論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數是21;(4)乙的成績的中位數是18.則這4個結論中,正確結論的個數為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為2的正方體中,,分別為棱的中點,為棱上的一點,且,設點的中點,則點到平面的距離為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案