精英家教網 > 高中數學 > 題目詳情
若函數f(x)=ax4+bx2+c滿足f′(1)=2,則f′(-1)等于(  )
A.-1B.- 2C.2D.0
B
∵f(x)=ax4+bx2+c,
∴f′(x)=4ax3+2bx,
∴f′(1)=4a+2b=2,
∴f′(-1)=-4a-2b=-(4a+2b)=-2.故選B.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,(a為實數).
(1) 當a=5時,求函數處的切線方程;
(2) 求在區(qū)間)上的最小值;
(3) 若存在兩不等實根,使方程成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當a=2時,求函數y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數f(x)的單調性;
(3)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設a為實數,函數f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調區(qū)間及極值;
(2)求證:當a>ln2-1且x >0時,ex>x2-2ax+1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數的導數的最大值為3,則的圖象的一條對稱軸的方程是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知向量,,為常數, 是自然對數的底數),曲線在點處的切線與軸垂直,
(Ⅰ)求的值及的單調區(qū)間;
(Ⅱ)已知函數 (為正實數),若對于任意,總存在, 使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax--3ln x,其中a為常數.
(1)當函數f(x)的圖象在點處的切線的斜率為1時,求函數f(x)在上的最小值;
(2)若函數f(x)在區(qū)間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點P(1,-4)作函數F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

f0(x)=cos x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n
N,則f2 011(x)等于  (  ).
A.sin xB.-sin x
C.cos xD.-cos x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若函數f(x)=cos2,則f=________.

查看答案和解析>>

同步練習冊答案