【題目】如圖,四棱錐P﹣ABCD的底面是邊長為1的正方形,PA底面ABCD,E、F分別為AB、PC的中點(diǎn).

)求證:EF平面PAD;

)若PA=2,試問在線段EF上是否存在點(diǎn)Q,使得二面角Q﹣AP﹣D的余弦值為?若存在,確定點(diǎn)Q的位置;若不存在,請說明理由.

【答案】I)證明見解析;(II滿足條件的存在,是中點(diǎn).

【解析】

試題分析:本題考查二面角,空間中線面的位置關(guān)系,向量數(shù)量積運(yùn)算,注意解題方法的積累,建立坐標(biāo)系是解決本題的關(guān)鍵,屬于中檔題,考查學(xué)生的分析問題解決問題的能力、空間想象能力、邏輯推理能力、計算能力.第一問,中點(diǎn),連接,通過中位線定理可得,利用線面平行的判定定理即得結(jié)論;第二問,以點(diǎn)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則平面的法向量與平面的法向量的夾角的余弦值即為,計算即可.

試題解析:證明:()取中點(diǎn),連接,在中,的中點(diǎn), ,正方形中點(diǎn),,,故四邊形為平行四邊形,

平面,平面, 平面;

)結(jié)論:滿足條件的存在,是中點(diǎn).理由如下:如圖:以點(diǎn)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,

,由題易知平面的法向量為,假設(shè)存在滿足條件:設(shè),,,,設(shè)平面的法向量為,

,可得,

由已知:,解得:,

所以滿足條件的存在,是中點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題:“若ab=0,則a=0b=0”的逆否命題是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足:(其中為常數(shù))

(1)若,,數(shù)列是等差數(shù)列,求的值;

(2)若數(shù)列是等比數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列:

工人

廢品數(shù)

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

則有結(jié)論( 。

A.甲的產(chǎn)品質(zhì)量比乙的產(chǎn)品質(zhì)量好一些 B.乙的產(chǎn)品質(zhì)量比甲的產(chǎn)品質(zhì)量好一些

C.兩人的產(chǎn)品質(zhì)量一樣好 D.無法判斷誰的質(zhì)量好一些

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是水資源匱乏的國家,為鼓勵節(jié)約用水,某市打算出臺一項(xiàng)水費(fèi)政策措施.規(guī)定:每季度每人用水量不超過5噸時,每噸水費(fèi)收基本價1.3元;若超過5噸而不超過6噸時,超過部分的水費(fèi)按基本價3倍收;若超過6噸而不超過7噸時,超過部分的水費(fèi)按基本價5倍收。橙吮炯径葘(shí)際用水量為噸,應(yīng)交水費(fèi)為元.

1,,的值;

2試求出函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2a1)x , 若x>0時總有f(x)>1,則實(shí)數(shù)a的取值范圍是( )
A.1<a<2
B.a<2
C.a>1
D.0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)有兩個零點(diǎn)0和-2,且最小值是-1,函數(shù)的圖象關(guān)于原點(diǎn)對稱.

(1)求的解析式;

(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為菱形,且,

(1)求證:平面平面;

(2)設(shè)上的動點(diǎn),求與平面所成最大角的正切值;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)圖所示,在直角梯形ABCD中,AD∥BC,,AB=BC=1,AD=2,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.

1證明:CD⊥平面A1OC;

2若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案