分析 (1)利用導(dǎo)數(shù)的幾何意義求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)(i)分類討論,利用函數(shù)的單調(diào)性,即可求實(shí)數(shù)t的最大值;
(ii)當(dāng)x>1時(shí)整理得$2lnx<\frac{{{x^2}-1}}{x}=x-\frac{1}{x}$,令$x=\frac{k}{k-1}$,則$2ln\frac{k}{k-1}<\frac{k}{k-1}-\frac{k-1}{k}=\frac{1}{k}+\frac{1}{k-1}$,即可證明不等式.
解答 解:(1)由題意x∈(0,+∞)且$f'(x)=\frac{{\frac{1}{x}(x+1)-lnx}}{{{{(x+1)}^2}}}=\frac{x+1-xlnx}{{x{{(x+1)}^2}}}$,∴$f'(1)=\frac{2-0}{4}=\frac{1}{2}$,
又$f(1)=\frac{0}{2}=0$,∴f(x)在點(diǎn)(1,f(1))處的切線方程為$y-0=\frac{1}{2}(x-1)$,即x-2y-1=0.
(2)(i)由題意知$\frac{lnx}{x+1}-\frac{lnx}{x-1}-\frac{t}{x}>0$,
設(shè)$g(x)=\frac{lnx}{x+1}-\frac{lnx}{x-1}-\frac{t}{x}$,則$g'(x)=\frac{(x-1)-(x+1)}{{{x^2}-1}}lnx-\frac{t}{x}$=$\frac{1}{{1-{x^2}}}[2lnx+\frac{{t({x^2}-1)}}{x}]$,設(shè)$h(x)=2lnx+\frac{{t({x^2}-1)}}{x}$,則$h'(x)=\frac{2}{x}+t(1+\frac{1}{x^2})=\frac{{t{x^2}+2x+t}}{x^2}$,
當(dāng)t≥0時(shí),∵x>0,∴h'(x)>0,∴h(x)在(0,+∞)上單調(diào)遞增,
又h(1)=0,∴x∈(0,1)時(shí),h(x)<0,
又$\frac{1}{{1-{x^2}}}>0$,∴g(x)<0不符合題意.
當(dāng)t<0時(shí),設(shè)ϕ(x)=tx2+2x+t,
①若△=4-4t2≤0即t≤1時(shí),ϕ(x)≤0恒成立,即h'(x)≤0在(0,+∞)恒成立,
∴h(x)在(0,+∞)上單調(diào)遞減,
又h(1)=0,∴x∈(0,1)時(shí),h(x)>0,$\frac{1}{{1-{x^2}}}>0$,g(x)>0,x∈(1,+∞)時(shí),h(x)<0,$\frac{1}{{1-{x^2}}}<0$,g(x)>0,符合題意.
②若△=4-4t2>0即-1<t<0時(shí),ϕ(x)的對(duì)稱軸$x=-\frac{1}{t}>1$,∴ϕ(x)在$(1,-\frac{1}{t})$上單調(diào)遞增,
∴$x∈(1,-\frac{1}{t})$時(shí),ϕ(x)>ϕ(1)=2+2t>0,∴h'(x)>0,∴h(x)在$(1,-\frac{1}{t})$上單調(diào)遞增,
∴h(x)>h(1)=0,而$\frac{1}{{1-{x^2}}}<0$,∴g(x)<0,不符合題意.
綜上所述t≤-1,∴t的最大值為-1.
(ii)由(i)知t=-1時(shí),$\frac{lnx}{x+1}-\frac{lnx}{x-1}+\frac{1}{x}>0$,
當(dāng)x>1時(shí)整理得$2lnx<\frac{{{x^2}-1}}{x}=x-\frac{1}{x}$,令$x=\frac{k}{k-1}$,則$2ln\frac{k}{k-1}<\frac{k}{k-1}-\frac{k-1}{k}=\frac{1}{k}+\frac{1}{k-1}$,
∴$2[ln\frac{2}{1}+ln\frac{3}{2}+…+ln\frac{n}{n-1}]<1+\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n-2}+\frac{1}{n-1}+\frac{1}{n-1}+\frac{1}{n}$,
∴$2lnn<1+2[\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n-1}]+\frac{1}{n}$,
∴$lnn<1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}-\frac{1}{2}-\frac{1}{2n}$,即$lnn<\sum_{i=1}^n{\frac{1}{i}}-\frac{1}{2}-\frac{1}{2n}$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查不等式的證明,體現(xiàn)分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 恒為正 | B. | 等于零 | C. | 恒為負(fù) | D. | 不小于零 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2,3,5} | C. | { 2,3,5} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com