【題目】已知橢圓的左右焦點(diǎn)分別為,若橢圓上一點(diǎn)滿足,過點(diǎn)的直線與橢圓交于兩點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)軸的垂線,交橢圓,求證:存在實(shí)數(shù),使得.

【答案】(1);(2)證明見解析.

【解析】試題分析:(1)第(1)問,由得到a=2,再把點(diǎn) 的坐標(biāo)代入橢圓方程,解方程組即得橢圓的方程.(2)第(2)問,設(shè)的方程為.

設(shè)點(diǎn),,再求出NG的方程,證明直線過點(diǎn),即可證明

存在實(shí)數(shù),使得.

試題解析:

(1)依題意,,故.

代入橢圓中,解得,

故橢圓的方程為:.

(2)由題知直線的斜率必存在,設(shè)的方程為.

設(shè)點(diǎn),,則,

聯(lián)立,.

,

,,

由題可得直線方程為

又∵,.

∴直線方程為,

,整理得

,

即直線過點(diǎn).

又∵橢圓的右焦點(diǎn)坐標(biāo)為,

∴三點(diǎn),,在同一直線上.

∴ 存在實(shí)數(shù),使得 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是正三角形,四邊形是正方形.

(Ⅰ)求證:;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)f(x)的單調(diào)性;

(2)若函數(shù)f(x)在定義域內(nèi)恒有f(x)≤0,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知橢圓.過點(diǎn)(m,0)作圓的切線l交橢圓GA,B兩點(diǎn).

I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;

II)將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時(shí),函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時(shí),的最小值為;

當(dāng)時(shí),的最小值為;

當(dāng)時(shí),的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

1)求的方程;

2)若點(diǎn)上,過的兩弦,若,求證: 直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)為, 為橢圓上一點(diǎn),且到兩個(gè)焦點(diǎn)的距離之和為6.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若已知直線,當(dāng)為何值時(shí),直線與橢圓有公共點(diǎn)?

(3)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為奇函數(shù), 為偶函數(shù),

(1)求的解析式及定義域

(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍

(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案