11.已知拋物線C:y2=4x的焦點為F,點M在拋物線C上,MQ垂直準(zhǔn)線l于點Q,若△MQF是等邊三角形,則$\overrightarrow{FQ}•\overrightarrow{FM}$的值為8.

分析 求出F的坐標(biāo),設(shè)M(x,2$\sqrt{x}$),則Q(-1,2$\sqrt{x}$),(x>0),根據(jù)△MQF是等邊三角形,求出x的值,從而求出$\overrightarrow{FQ}$,$\overrightarrow{FM}$的坐標(biāo),求出$\overrightarrow{FQ}•\overrightarrow{FM}$的值即可.

解答 解:y2=4x的焦點為F,故F(1,0),
設(shè)M(x,2$\sqrt{x}$),則Q(-1,2$\sqrt{x}$),(x>0),
$\overrightarrow{MQ}$=(x+1,0),$\overrightarrow{FQ}$=(-2,2$\sqrt{x}$),$\overrightarrow{MF}$=(x-1,2$\sqrt{x}$),
若△MQF是等邊三角形,
則|MQ|=|FQ|=|MF|,
故(x+1)2=4+4x,解得:x=3,x=-1(舍),
故$\overrightarrow{FQ}$=(-2,2$\sqrt{3}$),$\overrightarrow{FM}$=(2,2$\sqrt{3}$),
故$\overrightarrow{FQ}•\overrightarrow{FM}$=-4+12=8,
故答案為:8.

點評 本題考查了拋物線的性質(zhì),考查向量的運(yùn)算,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)集合A={x|-3≤x≤4},B={x|2m-1<x<m+1}
(1)當(dāng)m=1時,求A∩B;
(2)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,則z=x-y的最大值與最小值之差為( 。
A.5B.6C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知矩形ABCD的頂點都在半徑為4的球面上,且AB=6,$BC=2\sqrt{3}$,則棱錐O-ABCD的體積為(  )
A.$8\sqrt{3}$B.$8\sqrt{2}$C.$6\sqrt{6}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等比數(shù)列{an}的公比q≠1,且a3+a5=8,a2a6=16,則數(shù)列{an}的前2016項的和為(  )
A.8064B.4C.-4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=ax3-$\frac{3}{2}$x2+1存在唯一的零點x0,且x0<0,則實數(shù)a的取值范圍是(  )
A.(-∞,-$\frac{\sqrt{2}}{2}$)B.(-∞,-2)C.($\frac{1}{2}$,+∞)D.($\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-cosx,對于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下條件:①x1>x2;②$x_1^2>x_2^2$;③|x1|>x2,④$x_1^2<x_2^2$其中能使f(x1)>f(x2)恒成立的條件是序號是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-ax-2在x=1處取得極值.
(1)求a的值;
(2)若f(x)≤x2-2x+b對x∈[0,2]恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.△ABC的內(nèi)角A,B,C所對的邊為a,b,c,若bsinB=csinC且sin2A=sin2B+sin2C,則該三角形是(  )三角形.
A.等腰直角B.等邊C.銳角D.鈍角

查看答案和解析>>

同步練習(xí)冊答案