【題目】已知圓:,直線過定點(diǎn).
(1)若與圓相切,求直線的方程;
(2)若點(diǎn)為圓上一點(diǎn),求的最大值和最小值.
【答案】(1)直線方程為,;(2) .
【解析】試題分析:(1)根據(jù)直線和圓相切,即圓心到直線的距離等于半徑列式子求得k值;(2)將式子化簡得到,轉(zhuǎn)化為點(diǎn)點(diǎn)距,進(jìn)而轉(zhuǎn)化為圓心到的距離,加減半徑,即求得最值。
解析:
(1)①若直線的斜率不存在,即直線是,符合題意;
②若直線的斜率存在,設(shè)直線為,即.
由題意知,圓心到已知直線的距離等于半徑2,即,解得.
故所求直線方程為,.
(2),可以看作圓上的點(diǎn)與點(diǎn)距離的平方.
把點(diǎn)代入圓的方程:,所以點(diǎn)在圓外.
所以圓上的點(diǎn)到的最大距離為,最小距離為(其中為圓心到的距離),
又,故最大距離為,最小距離為,
所以,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了準(zhǔn)確地把握市場,做好產(chǎn)品生產(chǎn)計(jì)劃,對過去四年的數(shù)據(jù)進(jìn)行整理得到了第年與年銷量(單位:萬件)之間的關(guān)系如下表:
(1)在圖中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)根據(jù)散點(diǎn)圖選擇合適的回歸模型擬合與的關(guān)系(不必說明理由);
(3)建立關(guān)于的回歸方程,預(yù)測第5年的銷售量.
附注:參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓和的參數(shù)方程分別是(為參數(shù))和(為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓和的極坐標(biāo)方程;
(Ⅱ)射線: 與圓交于點(diǎn)、,與圓交于點(diǎn)、,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)是原點(diǎn)O,以x軸為對稱軸,且經(jīng)過點(diǎn)P(1,2).
(1)求拋物線C的方程;
設(shè)點(diǎn)A,B在拋物線C上,直線PA,PB分別與y軸交于點(diǎn)M,N,|PM|=|PN|.求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中=2.71828…為自然數(shù)的底數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求證:對任意的, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考】二次函數(shù)的圖象過原點(diǎn),對,恒有成立,設(shè)數(shù)列滿足.
(I)求證:對,恒有成立;
(II)求函數(shù)的表達(dá)式;
(III)設(shè)數(shù)列前項(xiàng)和為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 , .
(1)求證:平面 平面 ;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com