【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當(dāng)時(shí), ).
(1)當(dāng)時(shí),求的解析式;
(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當(dāng)時(shí), 有最大值.
【答案】(1);(2)詳見(jiàn)解析;(3).
【解析】試題分析:(1)根據(jù)分段函數(shù)的奇偶性可得當(dāng)時(shí),求的解析式;(2)由于可得恒成立,得在上為增函數(shù),根據(jù)對(duì)稱性得在上為減函數(shù);(3)討論時(shí),當(dāng)時(shí)兩種情況,研究單調(diào)性并求最值,舍去不合題意的情況,即可得結(jié)論.
試題解析: (1)設(shè),則,又是偶函數(shù), .
(2),又,即在上為增函數(shù).
(3)當(dāng)時(shí), 在上是增函數(shù), ,(不合題意,舍去).
當(dāng)時(shí), ,令,如下表:
↗ | 最大值 | ↘ |
在處取得最大值,滿足條件,當(dāng)時(shí),
在上單調(diào)遞減, 在無(wú)最大值,所以存在,使在上有最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在底面是邊長(zhǎng)為6的正方形的四棱錐P--ABCD中,點(diǎn)P在底面的射影H為正方形ABCD的中心,異面直線PB與AD所成角的正切值為,則四棱錐P--ABCD的內(nèi)切球與外接球的半徑之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點(diǎn).
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程.以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系,且在兩坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為(為參數(shù)).
(1)寫(xiě)出曲線的參數(shù)方程和直線的普通方程;
(2)過(guò)曲線上任意一點(diǎn)作與直線相交的直線,該直線與直線所成的銳角為,設(shè)交點(diǎn)為,求的最大值和最小值,并求出取得最大值和最小值時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)中央廣場(chǎng)由兩部分組成,一部分是邊長(zhǎng)為的正方形,另一部分是以為直徑的半圓,其圓心為.規(guī)劃修建的條直道, , 將廣場(chǎng)分割為個(gè)區(qū)域:Ⅰ、Ⅲ、Ⅴ為綠化區(qū)域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區(qū)域,其中點(diǎn)在半圓弧上, 分別與, 相交于點(diǎn), .(道路寬度忽略不計(jì))
(1)若經(jīng)過(guò)圓心,求點(diǎn)到的距離;
(2)設(shè), .
①試用表示的長(zhǎng)度;
②當(dāng)為何值時(shí),綠化區(qū)域面積之和最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列同時(shí)滿足:①對(duì)于任意的正整數(shù), 恒成立;②對(duì)于給定的正整數(shù), 對(duì)于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.
(1)已知判斷數(shù)列是否為“數(shù)列”,并說(shuō)明理由;
(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , , 成等差數(shù)列,證明: 是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿足點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎(jiǎng).甲說(shuō):“乙或丙未獲獎(jiǎng)”;乙說(shuō):“甲、丙都獲獎(jiǎng)”;丙說(shuō):“我未獲獎(jiǎng)”;丁說(shuō):“乙獲獎(jiǎng)”.四位同學(xué)的話恰有兩句是對(duì)的,則( )
A. 甲和乙不可能同時(shí)獲獎(jiǎng) B. 丙和丁不可能同時(shí)獲獎(jiǎng)
C. 乙和丁不可能同時(shí)獲獎(jiǎng) D. 丁和甲不可能同時(shí)獲獎(jiǎng)
【答案】C
【解析】若甲乙丙同時(shí)獲獎(jiǎng),則甲丙的話錯(cuò),乙丁的話對(duì);符合題意;
若甲乙丁同時(shí)獲獎(jiǎng),則乙的話錯(cuò),甲丙丁的話對(duì);不合題意;
若甲丙丁同時(shí)獲獎(jiǎng),則丙丁的話錯(cuò),甲乙的話對(duì);符合題意;;
若丙乙丁同時(shí)獲獎(jiǎng),則甲乙丙的話錯(cuò),丁的話對(duì);不合題意;
因此乙和丁不可能同時(shí)獲獎(jiǎng),選C.
【題型】單選題
【結(jié)束】
12
【題目】已知當(dāng)時(shí),關(guān)于的方程有唯一實(shí)數(shù)解,則值所在的范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com