【題目】在平面直角坐標(biāo)系中,橢圓:的離心率為,直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且.直線(xiàn)與軸、軸分別交于,兩點(diǎn).設(shè)直線(xiàn),的斜率分別為,,證明存在常數(shù)使得,并求出的值.
【答案】(1)(2)
【解析】試題分析:(1)甶橢圓離心率得到 的關(guān)系,化簡(jiǎn)橢圓方程,和直線(xiàn)方程聯(lián)立后求出交點(diǎn)的橫坐標(biāo),把弦長(zhǎng)用交點(diǎn)橫坐標(biāo)表示,則 的值可求,進(jìn)一步得到 的值,則橢圓方程可求;(2)設(shè)出 的坐標(biāo)分別為用 的坐標(biāo)表示 的坐標(biāo),把 和的斜率都用的坐標(biāo)表示,寫(xiě)出直線(xiàn)的方程,和橢圓方程聯(lián)立后利用根與系數(shù)關(guān)系得到橫縱坐標(biāo)的和,求出中點(diǎn)坐標(biāo),則 斜率可求,再寫(xiě)出所在直線(xiàn)方程,取 得到 點(diǎn)坐標(biāo),由兩點(diǎn)求斜率得到 的斜率,由兩直線(xiàn)斜率的關(guān)系得到 的值;
試題解析:(Ⅰ)∵,∴,,∴.①
設(shè)直線(xiàn)與橢圓交于,兩點(diǎn),不妨設(shè)點(diǎn)為第一象限內(nèi)的交點(diǎn).∴,∴代入橢圓方程可得.②
由①②知,,所以橢圓的方程為:.
(Ⅱ)設(shè),則,直線(xiàn)的斜率為,又,故直線(xiàn)的斜率為.設(shè)直線(xiàn)的方程為,由題知
,聯(lián)立,得.
∴,,由題意知,
∴,直線(xiàn)的方程為.
令,得,即,可得,∴,即.
因此存在常數(shù)使得結(jié)論成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體上,分別用過(guò)共頂點(diǎn)的三條棱中點(diǎn)的平面截該正方形,則截去個(gè)三棱錐后,剩下的幾何體的體積是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】百子回歸圖是由1,2,3…,100無(wú)重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門(mén)簡(jiǎn)史,如:中央四位“19 99 12 20”標(biāo)示澳門(mén)回歸日期,最后一行中間兩位“23 50”標(biāo)示澳門(mén)面積,…,同時(shí)它也是十階幻方,其每行10個(gè)數(shù)之和,每列10個(gè)數(shù)之和,每條對(duì)角線(xiàn)10個(gè)數(shù)之和均相等,則這個(gè)和為.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)A(﹣6,0)的直線(xiàn)l1與直線(xiàn)l2:y=2x相交于點(diǎn)B(m,4).
(1)求直線(xiàn)l1的表達(dá)式;
(2)過(guò)動(dòng)點(diǎn)P(n,0)且垂于x軸的直線(xiàn)與l1 , l2的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列是遞增數(shù)列,其前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè),求數(shù)列的前 項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)
在如圖所示的多面體中,四邊形和都為矩形。
(Ⅰ)若,證明:直線(xiàn)平面;
(Ⅱ)設(shè), 分別是線(xiàn)段, 的中點(diǎn),在線(xiàn)段上是否存在一點(diǎn),使直線(xiàn)平面?請(qǐng)證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(1+sin2x,sinx﹣cosx), =(1,sinx+cosx),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應(yīng)的x的集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com