【題目】已知函數(shù)f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,則f(x)的一個單調(diào)遞增區(qū)間可以是( )
A.
B.
C.
D.

【答案】D
【解析】解:∵當(dāng)x= 時,f(x)=﹣2sin(2x+φ)有最小值為﹣2
∴x= 是方程2x+φ= +2kπ的一個解,得φ= +2kπ,(k∈Z)
∵|φ|<π,∴取k=0,得φ=
因此函數(shù)表達式為:f(x)=﹣2sin(2x+
+2kπ≤2x+ +2kπ,得 +kπ≤x≤ +kπ,(k∈Z)
取k=0,得f(x)的一個單調(diào)遞增區(qū)間是
故選:D
【考點精析】根據(jù)題目的已知條件,利用正弦函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司生產(chǎn)某款手機的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬只時,該公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)設(shè)關(guān)于的方程個不同的實數(shù)解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地人群年齡與高血壓的關(guān)系,用簡單隨機抽樣方法從該地區(qū)年齡在20~60歲的人群中抽取200人測量血壓,結(jié)果如下:

高血壓

非高血壓

總計

年齡20到39歲

12

100

年齡40到60歲

52

100

總計

60

200

(1)計算表中的值;是否有99%的把握認為高血壓與年齡有關(guān)?并說明理由.

(2)現(xiàn)從這60名高血壓患者中按年齡采用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人,求恰好一名患者年齡在20到39歲的概率.

附參考公式及參考數(shù)據(jù): =

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最低點為
(1)求f(x)的解析式;
(2)當(dāng) ,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時, ;

(Ⅱ)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2 ﹣sin cos
(1)求函數(shù)f(x)的最小正周期和值域;
(2)若 ,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是

在某項測量中,測量結(jié)果服從正態(tài)分布.若內(nèi)取值的概率為0.35,則內(nèi)取值的概率為0.7;

以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),其變換后得到線性回歸方程,則;

已知命題若函數(shù)上是增函數(shù),則的逆否命題是,則函數(shù)上是減函數(shù)是真命題;

設(shè)常數(shù),則不等式恒成立的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在棱柱的面底是菱形,且面ABCD,

為棱的中點,M為線段的中點.

(1)求證:平面平面;

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案