【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為
(1)求f(x)的解析式;
(2)當(dāng) ,求f(x)的值域.

【答案】
(1)解:由最低點(diǎn)為 得A=2.

由x軸上相鄰的兩個(gè)交點(diǎn)之間的距離為 = ,

即T=π,

由點(diǎn) 在圖象上的

,∴


(2)解:∵ ,∴

當(dāng) = ,即 時(shí),f(x)取得最大值2;當(dāng)

時(shí),f(x)取得最小值﹣1,

故f(x)的值域?yàn)閇﹣1,2]


【解析】(1)根據(jù)最低點(diǎn)M可求得A;由x軸上相鄰的兩個(gè)交點(diǎn)之間的距離可求得ω;進(jìn)而把點(diǎn)M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函數(shù)的解析式.(2)根據(jù)x的范圍進(jìn)而可確定當(dāng) 的范圍,根據(jù)正弦函數(shù)的單調(diào)性可求得函數(shù)的最大值和最小值.確定函數(shù)的值域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.

(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以為頂點(diǎn)的六面體中, 均為等邊三角形,且平面平面 平面, , .

(1)求證: 平面

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用分層抽樣的方法從某校學(xué)生中抽取一個(gè)容量為60的樣本,其中高二年級(jí)抽取20人,高三年級(jí)抽取25人,已知該校高一年級(jí)共有800人,則該校學(xué)生總數(shù)為人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 軸的交點(diǎn)是橢圓 的一個(gè)焦點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點(diǎn),是否存在使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,則f(x)的一個(gè)單調(diào)遞增區(qū)間可以是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C經(jīng)過(guò)A(0,1),B(3,4),C(6,1)三點(diǎn).
(1)求圓C的方程;
(2)若圓C與直線x﹣y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若 ,試求x與y滿足的關(guān)系式;
(2)滿足(1)同時(shí)又有 ,求x,y的值及四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案