分析:(I)對a
n=a
n-1•3
n-1(n≥2,∈N
*)兩邊取以3為底的對數(shù)得log
3a
n=log
3a
n-1+(n-1),用累加法求出
log3an=,從而
Sn=(n∈N*),再根據(jù)數(shù)列中項與和的關(guān)系求出b
n=n-3.
(Ⅱ)利用等差數(shù)列的判定、求和公式進(jìn)行計算,注意分類討論.
解答:解:(I)∵log
3a
n=log
3a
n-1•3
n-1,兩邊取以3為底的對數(shù)得log
3a
n=log
3a
n-1+(n-1)移向得log
3a
n-log
3a
n-1=n-1,
log
3a
2-log
3a
1=1,
log
3a
3-log
3a
2=2,
…
log
3a
n-log
3a
n-1=n-1,
以上各式相加得(n≥2)
log3an-log3a1=1+2+…+(n-1)=,log3an=,且對n=1時也成立.
∴
Sn=log3()=(n∈N*)∴b
1=S
1=-2,
當(dāng)n≥2時,b
n=S
n-S
n-1=n-3,且對n=1時也成立
∴數(shù)列{b
n}的通項公式b
n=n-3(n∈N
*).
(II)設(shè)數(shù)列{|b
n|}的前n項和為T
n,
當(dāng)bn=n-30≤0即n≤3時,Tn=-(b1+b2+…+bn)=-S n=;
n>3時,Tn=-(a1+a2+a3)+(a4+a5+…+an)=Sn-2S3= 點評:本題考查數(shù)列通項公式求解,數(shù)列求和,考查了累加法、對數(shù)的運(yùn)算,分類討論的思想方法.