8.某同學(xué)根據(jù)“更相減損術(shù)”設(shè)計(jì)出程序框圖(圖).若輸入a的值為98,b的值為63,則執(zhí)行該程序框圖輸出的結(jié)果為(  )
A.0B.7C.14D.21

分析 該程序框圖的功能是輸出a與b的最大公約數(shù),由循環(huán)結(jié)構(gòu)的特點(diǎn),先判斷,再執(zhí)行,分別計(jì)算出當(dāng)前的a,b的值,即可得到結(jié)論.

解答 解:輸入a=98,b=63,a>b,
a=35,b=63,b>a,
a=35,b=28,a>b,
a=7,b=28,a<b,
a=7,b=21,a<b,
a=7,b=14,a<b,
a=7,b=7,a=b,
輸出a=7,
故選:B.

點(diǎn)評(píng) 本題考查算法和程序框圖,主要考查循環(huán)結(jié)構(gòu)的理解和運(yùn)用,以及賦值語句的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若p=$\sqrt{a+2}$+$\sqrt{a+5}$,q=$\sqrt{a+3}$+$\sqrt{a+4}$,a≥0,則p、q的大小關(guān)系是(  )
A.p<qB.p>qC.p=qD.由a的取值確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖,則該幾何體的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在R上定義運(yùn)算?:x?y=$\frac{x}{2-y}$,若關(guān)于x的不等式:(x-a)?(x+1-a)>0的解集是集合{x|-2≤x≤2}的子集,則實(shí)數(shù)a的取值范圍是[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex+ax,g(x)=ax-lnx,其中 a<0.
(1)若函數(shù)f(x)是(l,ln 5)上的單調(diào)函數(shù),求a的取值范圍;
(2)若存在區(qū)間M,使f(x)和g(x)在區(qū)間M上具有相同的單調(diào)性,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過拋物線C:y2=4x的焦點(diǎn)F作直線l交C于A,B兩點(diǎn),則|AF|+2•|BF|的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知P(1,1)為橢圓2x2+y2=4內(nèi)一定點(diǎn),過P引一條弦,使此弦以P為中點(diǎn),則弦所在的直線方程2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},則A∩B中的元素個(gè)數(shù)為(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知直角梯形ABCD所在的平面垂直于平面ABE,∠EAB=∠ABC=90°,∠DAB=60°,AB=AD=AE,P為線段BE的中點(diǎn).

(Ⅰ)求證:CP∥平面DAE;
(Ⅱ)求平面CDE與平面ABE所成的銳二面角θ的余弦值;
(Ⅲ)在線段EC上是否存在一點(diǎn)Q,使直線PQ與平面CDE所成的角的正弦值為$\frac{3\sqrt{6}}{14}$.若存在,求出$\frac{EQ}{EC}$的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案