【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.

【答案】(1);(2)見解析.

【解析】試題分析:(1)由題設(shè)知, ,又,解得,由此可得求橢圓的方程;2,則有,化簡得,對于直線,同理有,于是是方程的兩實根,故,即可證明結(jié)果;②考慮到時, 是橢圓的下頂點, 趨近于橢圓的上頂點,故若過定點,則猜想定點在軸上.

,得,于是有,直線的斜率為,直線的方程為,令,得,即可證明直線過定點.

試題解析:(1)由題設(shè)知, , ,又,

解得.

故所求橢圓的方程是.

2,則有,化簡得,

對于直線,同理有,

于是是方程的兩實根,故.

考慮到時, 是橢圓的下頂點, 趨近于橢圓的上頂點,故若過定點,則猜想定點在軸上.

,得,于是有.

直線的斜率為,

直線的方程為,

,得,

故直線過定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù))

(1)若,討論的單調(diào)性;

(2)若對任意的,都存在使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣16x+q+3
(1)若函數(shù)在區(qū)間[﹣1,1]上存在零點,求實數(shù)q的取值范圍;
(2)問:是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時,f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)證明: ,直線都不是曲線的切線;

(2)若,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域,其中三角形區(qū)域為生活區(qū),四邊形區(qū)域為教學(xué)區(qū), 為學(xué)校的主要道路(不考慮寬度). .

(1)求道路的長度;(2)求生活區(qū)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應(yīng)用.某網(wǎng)絡(luò)運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下?lián)尩降募t包個數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):

手機品牌 型號

I

II

III

IV

V

甲品牌(個)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手機品牌 紅包個數(shù)

優(yōu)

非優(yōu)

合計

甲品牌(個)

乙品牌(個)

合計

(1)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認為搶到的紅包個數(shù)與手機品牌有關(guān)?

(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.

①求在型號I被選中的條件下,型號II也被選中的概率;

②以表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,動點P(x,y)到兩條坐標軸的距離之和等于它到點(1,1)的距離,記點P的軌跡為曲線W,給出下列四個結(jié)論: ①曲線W關(guān)于原點對稱;
②曲線W關(guān)于直線y=x對稱;
③曲線W與x軸非負半軸,y軸非負半軸圍成的封閉圖形的面積小于 ;
④曲線W上的點到原點距離的最小值為2﹣
其中,所有正確結(jié)論的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=2px(p>0)的焦點為F,已知A,B為拋物線上的兩個動點,且滿足∠AFB=120°,過弦AB的中點M作拋物線準線的垂線MN,垂足為N,則 的最大值為(
A.2
B.
C.1
D.

查看答案和解析>>

同步練習(xí)冊答案