【題目】在長(zhǎng)方體中,,,分別是所在棱、的中點(diǎn),點(diǎn)是棱上的動(dòng)點(diǎn),聯(lián)結(jié).如圖所示.

1)求異面直線,所成角的大。ㄓ梅慈呛瘮(shù)值表示);

2)(理科)求以、為頂點(diǎn)的三棱錐的體積.

(文科)求以、、為頂點(diǎn)的三棱錐的體積.

【答案】(1) .(2)(理科)2;(文科)2.

【解析】

1)以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線、所成角.

2)(理科)由,,求出,由此能求出以、、為頂點(diǎn)的三棱錐的體積.

2)(文科)由,能求出以、、、為頂點(diǎn)的三棱錐的體積.

1)以為原點(diǎn),軸,軸,軸,

建立空間直角坐標(biāo)系,

由題意得,,

,,

,,

設(shè)異面直線、所成角為,

,

.

2)(理科)∵,,

,,

,

,

,

∴以、、為頂點(diǎn)的三棱錐的體積:

.

2)(文科)∵,

∴以、、為頂點(diǎn)的三棱錐的體積:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)且斜率為的直線交于,兩點(diǎn),

(1)求的方程;

(2)求過(guò)點(diǎn),且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.

(1)求的直角坐標(biāo)方程和的直角坐標(biāo);

(2)設(shè)交于兩點(diǎn),線段的中點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】影響消費(fèi)水平的原因很多,其中重要的一項(xiàng)是工資收入.研究這兩個(gè)變量的關(guān)系的一個(gè)方法是通過(guò)隨機(jī)抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費(fèi)狀況.下面的數(shù)據(jù)是某機(jī)構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個(gè)地區(qū)的職工平均工資與城鎮(zhèn)居民消費(fèi)水平(單位:萬(wàn)元).

地區(qū)

上海

江蘇

浙江

安徽

福建

職工平均工資

9.8

6.9

6.4

6.2

5.6

城鎮(zhèn)居民消費(fèi)水平

6.6

4.6

4.4

3.9

3.8

(1)利用江蘇、浙江、安徽三個(gè)地區(qū)的職工平均工資和他們的消費(fèi)水平,求出線性回歸方程,其中,;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1萬(wàn),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)所得的線性回歸方程是否可靠?(的結(jié)果保留兩位小數(shù))

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率為,其兩個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的四邊形面積為

1)求橢圓C的方程;

2)過(guò)點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),且點(diǎn)M恰為線段AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,錯(cuò)誤的是(

A.圓錐所有的軸截面是全等的等腰三角形

B.圓柱的軸截面是過(guò)母線的截面中面積最大的一個(gè)

C.圓錐的軸截面是所有過(guò)頂點(diǎn)的界面中面積最大的一個(gè)

D.當(dāng)球心到平面的距離小于球面半徑時(shí),球面與平面的交線總是一個(gè)圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) .

(1)證明: 上單調(diào)遞減;

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)的進(jìn)步,經(jīng)濟(jì)的發(fā)展,道路上的汽車越來(lái)越多,隨之而來(lái)的交通事故也增多.據(jù)有關(guān)部門(mén)調(diào)查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關(guān)部門(mén),對(duì)2018 年參加駕照考試的21 歲以下學(xué)員隨機(jī)抽取10 名學(xué)員,對(duì)他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關(guān)知識(shí))進(jìn)行兩輪現(xiàn)場(chǎng)測(cè)試,并把兩輪測(cè)試成績(jī)的平均分作為該名學(xué)員的抽測(cè)成績(jī).記錄的數(shù)據(jù)如下:

(1)從2018年參加駕照考試的21歲以下學(xué)員中隨機(jī)選取一名學(xué)員,試估計(jì)這名學(xué)員抽測(cè)成績(jī)大于或等于90分的概率;

(2)根據(jù)規(guī)定,科目三和科目四測(cè)試成績(jī)均達(dá)到90分以上(含90)才算測(cè)試合格.

(i)從抽測(cè)的1號(hào)至5號(hào)學(xué)員中任取兩名學(xué)員,記為學(xué)員測(cè)試合格的人數(shù),求的分布列和數(shù)學(xué)期望

(ii) 記抽取的10名學(xué)員科目三和科目四測(cè)試成績(jī)的方差分別為,,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

某學(xué)校高一數(shù)學(xué)興趣小組對(duì)學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀(體育成績(jī)滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級(jí)各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí))

14

11

13

12

9

體育成績(jī)優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請(qǐng)根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):.

參考公式:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案