橢圓以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過點(diǎn).記其上頂點(diǎn)為,右頂點(diǎn)為.
(1)求圓心在線段上,且與坐標(biāo)軸相切于橢圓焦點(diǎn)的圓的方程;
(2)在橢圓位于第一象限的弧上求一點(diǎn),使的面積最大.
(1)圓的方程為;
(2)當(dāng)點(diǎn)的坐標(biāo)為,的面積最大.

試題分析:(1)先將橢圓的方程為,利用待定系數(shù)法求出橢圓的方程,并求出橢圓的焦點(diǎn)坐標(biāo),利用圓與坐標(biāo)軸相切于焦點(diǎn),且圓心在線段上,從而求出圓心的坐標(biāo)以及圓的半徑,進(jìn)而求出圓的方程;(2)法一是根據(jù)參數(shù)方程法假設(shè)點(diǎn)的坐標(biāo),并計(jì)算出點(diǎn)到線段的距離和線段的長(zhǎng)度,然后以為底邊,的高計(jì)算的面積的代數(shù)式,并根據(jù)代數(shù)式求出的面積的最大值并確定點(diǎn)的坐標(biāo);法二是利用的面積取最大值時(shí),點(diǎn)處的切線與線段平行,將切線與橢圓的方程聯(lián)立,利用確定切線的方程,進(jìn)而求出點(diǎn)的坐標(biāo).
試題解析:(1)設(shè)橢圓的方程為,則有,解得,
故橢圓的方程為,故上頂點(diǎn),右頂點(diǎn),
則線段的方程為,即,
由于圓與坐標(biāo)軸相切于橢圓的焦點(diǎn),且橢圓的左焦點(diǎn)為,右焦點(diǎn)為,
若圓與坐標(biāo)軸相切于點(diǎn),則圓心在直線上,此時(shí)直線與線段無交點(diǎn),
若圓與坐標(biāo)軸相切于點(diǎn),則圓心在直線上,聯(lián)立,解得
即圓的圓心坐標(biāo)為,半徑長(zhǎng)為,
故圓的方程為
(2)法一:設(shè)點(diǎn)的坐標(biāo)為,且,
點(diǎn)到線段的距離 
,
,則,故,故,
,而
,
故當(dāng)時(shí),即當(dāng)時(shí),的面積取到最大值為,
此時(shí)點(diǎn)的坐標(biāo)為;
法二:設(shè)與平行的直線為,
當(dāng)此直線與橢圓相切于第一象限時(shí),切點(diǎn)即所求點(diǎn),
得:
令①中,有:
又直線過第一象限,故,解得,
此時(shí)由①有
代入橢圓方程,取,解得.故.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左焦點(diǎn)為,離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為
(1)求橢圓方程;
(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

矩形的中心在坐標(biāo)原點(diǎn),邊軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線,,的交點(diǎn)依次為.

(1)求以為長(zhǎng)軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請(qǐng)以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段等分點(diǎn)從左向右依次為,線段等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)和短軸的兩個(gè)端點(diǎn)構(gòu)成邊長(zhǎng)為2的正方形.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線與橢圓相交于,兩點(diǎn).點(diǎn),記直線的斜率分別為,當(dāng)最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線.過點(diǎn)的直線兩點(diǎn).拋物線在點(diǎn)處的切線與在點(diǎn)處的切線交于點(diǎn)

(Ⅰ)若直線的斜率為1,求;
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別是、,下頂點(diǎn)為,線段的中點(diǎn)為為坐標(biāo)原點(diǎn)),如圖.若拋物線軸的交點(diǎn)為,且經(jīng)過、兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在橢圓上,且,若AB=4,,則橢圓的兩個(gè)焦點(diǎn)之間的距離為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為,過焦點(diǎn)軸垂直的直線和雙曲線的一個(gè)交點(diǎn)為,若的等比中項(xiàng),則該雙曲線的離心率為             .

查看答案和解析>>

同步練習(xí)冊(cè)答案