【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)記函數(shù)的兩個零點分別為,且.已知,若不等式恒成立,求的取值范圍.

【答案】(Ⅰ)函數(shù)上單調(diào)遞增;在上單調(diào)遞減; (Ⅱ).

【解析】試題分析:(Ⅰ)求出函數(shù)的導數(shù),通過討論的范圍,求出函數(shù) 的單調(diào)區(qū)間即可; (Ⅱ)分離參數(shù)得:,從而可得恒成立;再令,從而可得不等式上恒成立,再令,從而利用導數(shù)化恒成立問題為最值問題即可.

試題解析:(Ⅰ)依題意,函數(shù)的定義域為

,

時,恒成立,故函數(shù)上單調(diào)遞增;

時,令,得;令,得;

故函數(shù)上單調(diào)遞增;在上單調(diào)遞減,

(Ⅱ)由(I)可知分別為方程的兩個根,即,,

所以原式等價于.

因為,所以原式等價于,

又由,作差得,,即.

所以原式等價于.

因為,原式恒成立,即恒成立.

,則不等式上恒成立.

,則,

時,可見時,,所以上單調(diào)遞增,又恒成立,符合題意;

時,可見當時,;當時,,

所以時單調(diào)遞增,在時單調(diào)遞減.

,所以上不能恒小于0,不符合題意,舍去.

綜上所述,若不等式恒成立,只須,又,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) 的定義域是R,對于任意實數(shù) ,恒有,且當 時, 。

1求證: ,且當 時,有 ;

2判斷 R上的單調(diào)性;

3設集合A,B,若A∩B,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國個人所得稅法》規(guī)定,公民全月工資所得不超過3500元的部分不必納稅,超過3500元的部分為全月應納稅所得額。此項稅款按下表分段累計計算:

全月應納稅所得額

稅率(%)

不超過1500元的部分

3

超過1500元至4500元的部分

10

超過4500元至9000元的部分

20

(1)某人10月份應交此項稅款為350元,則他10月份的工資收入是多少?

(2)假設某人的月收入為元, ,記他應納稅為元,求的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某DVD光盤銷售部每天的房租、人員工資等固定成本為300元,每張DVD光盤的進價是6元,銷售單價與日均銷售量的關系如表所示:

銷售單價(元)

7

8

9

10

11

12

13

日均銷售量(張)

480

440

400

360

320

280

240

(1)請根據(jù)以上數(shù)據(jù)作出分析,寫出日均銷售量P(x)(張)關于銷售單價x(元)的函數(shù)關系式,并寫出其定義域;

(2)問這個銷售部銷售的DVD光盤銷售單價定為多少時才能使日均銷售利潤最大?最大銷售利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·

乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.

(Ⅰ)求實數(shù)的值;

(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B、C是△ABC的三個內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.

(1)求角A;

(2)若=-3,求tanC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,求數(shù)列的通項公式.勤于思考的小紅設計了下面兩種解題思路,請你選擇其中一種并將其補充完整.

思路1:先設的值為1,根據(jù)已知條件,計算出_________, __________ _________

猜想: _______.

然后用數(shù)學歸納法證明.證明過程如下:

①當時,________________,猜想成立

②假設N*)時,猜想成立,即_______

那么,當時,由已知,得_________

,兩式相減并化簡,得_____________(用含的代數(shù)式表示).

所以,當時,猜想也成立.

根據(jù)①和②,可知猜想對任何N*都成立.

思路2:先設的值為1,根據(jù)已知條件,計算出_____________

由已知,寫出的關系式: _____________________,

兩式相減,得的遞推關系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項公式____,進而得到____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1)求f(2)與f, f(3)與f;

(2)由(1)中求得結果,你能發(fā)現(xiàn)f(x)與f有什么關系?并證明你的發(fā)現(xiàn);

(3)求f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公比小于1的等比數(shù)列的前項和為

(1)求數(shù)列的通項公式;

(2)設,若,求

查看答案和解析>>

同步練習冊答案