(09年湖北鄂州5月模擬理)(13分)數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N+總有an,Sn,成等差數(shù)列.
⑴求數(shù)列{an}的通項(xiàng)公式;
⑵設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且.求證:對(duì)任意x∈(1,e]和n∈N+,總有Tn<2;
⑶正數(shù)數(shù)列{an}中,an+1=(cn)n+1(n∈N+).求數(shù)列{cn}中的最大項(xiàng).
解析:⑴由已知,對(duì)于n∈N+總有①,∴②
①-②得∴
∵an>0,∴∴數(shù)列是公差為1的等差數(shù)列
又n=1時(shí),,解得a1=1,∴an=n(n∈N+)。 4分
⑵證明:∵an=n,則對(duì)任意和,總有 6分
∴
8分
⑶解:由已知,,
,
易得c1<c2,c2>c3>c4>…猜想n≥2時(shí),是單調(diào)遞減數(shù)列 10分
令,則
∴當(dāng)x≥3時(shí),f’ (x)<0,故在內(nèi)f (x)單減 12分
由an+1=(cn)n+1知
∴n≥2時(shí),是單減數(shù)列,即{cn}是單減數(shù)列,又c1<c2
∴{cn}中最大項(xiàng)為年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北鄂州5月模擬理)(12分)已知函數(shù),.
⑴求f (x)的最值;
⑵若不等式<2在上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北鄂州5月模擬理)(12分)如圖,已知四棱錐P―ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60o,E、F 分別是BC、PC的中點(diǎn).
⑴證明:AE⊥PD;
⑵若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正
切值為,求二面角E―AF―C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北鄂州5月模擬理)已知兩定點(diǎn)A(-3,0),B(3,0),動(dòng)圓M與直線AB相切于點(diǎn)N,且,現(xiàn)分別過點(diǎn)A、B作動(dòng)圓M的切線(異于直線AB),兩切線相交于點(diǎn)P.
⑴求動(dòng)點(diǎn)P的軌跡方程;
⑵若直線xmy3=0截動(dòng)點(diǎn)P的軌跡所得的弦長(zhǎng)為5,求m的值;
⑶設(shè)過軌跡上的點(diǎn)P的直線與兩直線分別交于點(diǎn)P1、P2,且點(diǎn)P分有向線段所成的比為λ(λ>0),當(dāng)λ∈時(shí),求的最值.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北鄂州5月模擬理)(14分)設(shè)函數(shù).
⑴求f (x)的單調(diào)區(qū)間和極值;
⑵是否存在實(shí)數(shù)a,使得關(guān)于x的不等式f (x)≥a的解集為(0,+∞)?若存在,求a的取值范圍;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北鄂州5月模擬文)(13分)設(shè)f (x)=,方程f (x)=x有唯一解,數(shù)列{xn}滿足f (x1)=1,
xn+1=f (xn)(n∈N*).
⑴求數(shù)列{xn}的通項(xiàng)公式;
⑵已知數(shù)列{an}滿足,,求證:對(duì)一切n≥2的正整數(shù)都滿足.查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com