已知點P在橢圓上,焦點為F1、F2,且∠F1PF2=30°,求△F1PF2的面積.(8分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設橢圓其相應于焦點的準線方程為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知過點傾斜角為的直線交橢圓兩點,求證:
;
(Ⅲ)過點作兩條互相垂直的直線分別交橢圓,求 的最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

P為橢圓上一點,左、右焦點分別為F1,F(xiàn)2。
(1)若PF1的中點為M,求證
(2)若,求之值。
(3)求 的最值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.
已知的頂點在橢圓上,在直線上,

(1)求邊中點的軌跡方程;
(2)當邊通過坐標原點時,求的面積;
(3)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題15分)已知橢圓的右焦點恰好是拋物線的焦點,
是橢圓的右頂點.過點的直線交拋物線兩點,滿足,
其中是坐標原點.
(1)求橢圓的方程;
(2)過橢圓的左頂點軸平行線,過點軸平行線,直線
相交于點.若是以為一條腰的等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知橢圓的離心率為,右焦點也是拋物線的焦點。     
(1)求橢圓方程;
(2)若直線相交于兩點。
①若,求直線的方程;
②若動點滿足,問動點的軌跡能否與橢圓存在公共點?若存在,求出點的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓左焦點是,右焦點是,右準線是上一點,與橢圓交于點,滿足,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知m(x+y+2y+1)=(x-2y+3)表示的曲線為一個橢圓,則m的取值范圍是       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在等腰梯形ABCD中,AB//CD,且AB=2AD,設,以A,B為焦點且過點D的雙曲線的離心率為,以C,D為焦點且過點A的橢圓的離心率為,則                              (   )
                 
A.隨著角度的增大,增大,為定值
B.隨著角度的增大,減小,為定值
C.隨著角度的增大,增大,也增大
C.隨著角度的增大,減小,也減小

查看答案和解析>>

同步練習冊答案