如圖,在底角為的等腰梯形中,已知,分別為,的中點(diǎn).設(shè),.
(1)試用,表示,;
(2)若,試求的值.
(1),; (2).
解析試題分析:(1) 利用平面向量的加法和減法的運(yùn)算法則進(jìn)行計(jì)算,用已知量表示未知量,注意向量的方向的變化;(2)要求,就要找到向量,的模及其數(shù)量積,先求出向量的模,再根據(jù)向量的性質(zhì)進(jìn)行計(jì)算.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/b/zn06u.png" style="vertical-align:middle;" />,,,分別為,的中點(diǎn),
所以; 3分
. 6分
(2),, ,所以, 8分
那么. 12分
考點(diǎn):1、平面向量的模及數(shù)量積;2、平面向量的加減混合運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a與b的夾角θ;
(2)求|a+b|;
(3)若=a,=b,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)A
(Ⅰ)若求證:;
(Ⅱ)若求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是同一平面內(nèi)的三個(gè)向量,其中
(1)若,且,求:的坐標(biāo)
(2)若,且與垂直,求與的夾角
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量 與 共線(xiàn),設(shè)函數(shù).
(1)求函數(shù)的周期及最大值;
(2)已知銳角 △ABC 中的三個(gè)內(nèi)角分別為 A、B、C,若有,邊 BC=,,求 △ABC 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知=,= ,=,設(shè)是直線(xiàn)上一點(diǎn),是坐標(biāo)原點(diǎn)
(1)求使取最小值時(shí)的;
(2)對(duì)(1)中的點(diǎn),求的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com