【題目】已知拋物線過點,且P到拋物線焦點的距離為2直線過點,且與拋物線相交于A,B兩點.

(Ⅰ)求拋物線的方程;

(Ⅱ)若點Q恰為線段AB的中點,求直線的方程;

(Ⅲ)過點作直線MA,MB分別交拋物線于CD兩點,請問CD,Q三點能否共線?若能,求出直線的斜率;若不能,請說明理由.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)能,.

【解析】

(Ⅰ)根據(jù)題意,結(jié)合拋物線的性質(zhì),即可求出拋物線的方程為

(Ⅱ)設(shè),,設(shè)而不求利用點差法求出直線AB的斜率,再利用點斜式即可求出直線的方程。

(Ⅲ)設(shè),,且.聯(lián)立直線與拋物線方程,得到聯(lián)立方程,再利用韋達定理以及M,A,C三點共線得出的數(shù)量關(guān)系,假設(shè)C,D,Q三點共線,構(gòu)造關(guān)于 的等式,轉(zhuǎn)化為的等式,進行求解即可得出結(jié)論。

(Ⅰ)由題意有,及,

解得.故拋物線的方程為.

(Ⅱ)設(shè),則 ,

兩式相減得,即.

于是,,

(注:利用直線與拋物線方程聯(lián)立,求得,同樣得4分)

故直線l的方程為,即;

(Ⅲ)設(shè),,,,且.

,得,則 ,

M,A,C三點共線,可得,化簡得,即.

同理可得,

假設(shè)C,D,Q三點共線,則有,化簡得,

進一步可得,,即,解得.

因此,當直線l的斜率時,CD,Q三點共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是由滿足下列性質(zhì)的函數(shù)構(gòu)成的集合:在函數(shù)的定義城內(nèi)存在,使得成立,已知下列函數(shù):①;②;③;④. 其中屬于集合的函數(shù)是________. (寫出所有滿足要求的函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是菱形,.

1)證明:平面平面;

2)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

(2)若對任意的,總存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為是橢圓短軸的一個頂點,并且是面積為的等腰直角三角形.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點,過作與軸垂直的直線,已知點,問直線的交點的橫坐標是否為定值?若是,則求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在“楊輝三角”中,去除所有為1的項,依次構(gòu)成數(shù)列2,3,3,46,4,510,10,5,…,則此數(shù)列前21項的和為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,點在橢圓上,且的最小值是為坐標原點).

1)求橢圓的標準方程.

2)已知動直線與圓相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)時,設(shè)的兩個極值點為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)滿足,記的導(dǎo)函數(shù)為,當時恒有.,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案