3.已知角α始邊與x軸的正半軸重合,終邊在直線2x+y=0上,則sin2α=$-\frac{4}{5}$.

分析 根據(jù)三角函數(shù)的定義,結(jié)合同角三角函數(shù)關(guān)系進(jìn)行化簡(jiǎn)即可.

解答 解:∵α終邊落在直線2x+y=0上,即x=-$\frac{1}{2}$y,
∴tanα=$\frac{y}{x}$=-2.
∴sin2α=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$=$-\frac{4}{5}$.
故答案為:$-\frac{4}{5}$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)值的計(jì)算,根據(jù)三角函數(shù)的定義是解決本題的關(guān)鍵,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)全集為R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若不存在實(shí)數(shù)x使不等式|x-1|+|x-3|≤a2-2a-1成立,則實(shí)數(shù)a的取值范圍是( 。
A.a<-1或a>3B.-1<a<3C.-1≤a≤3D.a≤-1或a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)={log_a}\frac{1-mx}{x-1}$(a>0,a≠1,m≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(a-2,n)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x||x|<1},B={x|x2-2x>0},則A∩(∁RB)等于( 。
A.(-1,0]B.(-1,0)C.[0,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(a+1)lnx+$\frac{a}{x}$-x(x>0),g(x)=ex-x-2,其中a為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)的圖象在點(diǎn)(2,f(2))處的切線的斜率為-$\frac{1}{2}$,求證:?x∈(0,+∞),f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}滿足3an+1+an=0,${a_3}=\frac{4}{9}$,則{an}的前8項(xiàng)和等于( 。
A.-6(1-3-8B.$\frac{1}{9}(1-{3^{-8}})$C.3(1-3-8D.3(1+3-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=(m2-1)x2+(m-1)x+1是偶函數(shù),則在區(qū)間(-∞,0]上f(x)( 。
A.可能是增函數(shù),也可能是常函數(shù)B.是常函數(shù)
C.是增函數(shù)D.是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊上一點(diǎn)P(3,1),α∈(0,π),β∈(0,π),tan(α-β)=$\frac{sin2(\frac{π}{2}-α)+4co{s}^{2}α}{10co{s}^{2}α+cos(\frac{3π}{2}-2α)}$.
(1)求tan(α-β)的值;
(2)求tan β的值.
(3)求2α-β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案