【題目】(題文)如圖,長(zhǎng)方形材料中,已知.點(diǎn)為材料內(nèi)部一點(diǎn),,,且,. 現(xiàn)要在長(zhǎng)方形材料中裁剪出四邊形材料,滿足,點(diǎn)分別在邊,上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點(diǎn)上的位置,使得四邊形材料的面積最小,并求出其最小值.

【答案】(1)見(jiàn)解析;(2)當(dāng)時(shí),四邊形材料的面積最小,最小值為.

【解析】分析:(1)通過(guò)直角三角形的邊角關(guān)系,得出,進(jìn)而得出四邊形材料的面積的表達(dá)式,再結(jié)合已知尺寸條件,確定角的范圍.

(2)根據(jù)正切的兩角差公式和換元法,化簡(jiǎn)和整理函數(shù)表達(dá)式,最后由基本不等式,確定面積最小值及對(duì)應(yīng)的點(diǎn)上的位置.

詳解:解:(1)在直角中,因?yàn)?/span>,

所以,

所以,

在直角中,因?yàn)?/span>,

所以

所以,

所以 ,.

(2)因?yàn)?/span>

,由,得,

所以

當(dāng)且僅當(dāng)時(shí),即時(shí)等號(hào)成立,

此時(shí),,,

答:當(dāng)時(shí),四邊形材料的面積最小,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=xlnxx+1,gx)=exax,aR

(Ⅰ)求fx)的最小值;

(Ⅱ)若gx≥1R上恒成立,求a的值;

(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,空間幾何體中,四邊形是梯形,四邊形是矩形,且平面平面, , , 是線段上的動(dòng)點(diǎn).

(1)求證: ;

(2)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;

(3)在(2)的條件下,求空間幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在棱長(zhǎng)為2的正方體中,的中點(diǎn)是P,過(guò)點(diǎn)作與截面平行的截面,則截面的面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,,.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足:

對(duì)于任意,都有成立.

①求數(shù)列的通項(xiàng)公式;

②設(shè)數(shù)列,問(wèn):數(shù)列中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若有兩個(gè)不同的極值點(diǎn),,且,若不等式恒成立.求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊, ,那么下面說(shuō)法正確的是( )

A. 平面平面

B. 四面體的體積是

C. 二面角的正切值是

D. 與平面所成角的正弦值是

查看答案和解析>>

同步練習(xí)冊(cè)答案