【題目】已知定義在[﹣ ]的函數(shù)f(x)=sinx(cosx+1)﹣ax,若y=f(x)僅有一個零點,則實數(shù)a的取值范圍是(
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣
D.(﹣∞,﹣ ]∪( ,+∞)

【答案】B
【解析】解:令g(x)=sinx(cosx+1),
則g′(x)=(2cosx﹣1)(cosx+1),
當x∈[﹣ ,﹣ )時,g′(x)<0,g(x)為減函數(shù),
當x∈(﹣ )時,g′(x)>0,g(x)為增函數(shù),
當x∈( , ]時,g′(x)<0,g(x)為減函數(shù),
故g(x)=sinx(cosx+1)的圖象如下圖所示:

當x=± 時,g(x)=±1,此時a= ,
當x=0時,g′(x)=2,
若y=f(x)僅有一個零點,
則函數(shù)g(x)=sinx(cosx+1)的圖象與y=ax的圖象有且僅有一個交點,
由圖可得:a∈(﹣∞, )∪[2,+∞),
故選:B
【考點精析】認真審題,首先需要了解利用導數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為等腰梯形, , ,四邊形為正方形,平面平面.

(1)若點是棱的中點,求證: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點個數(shù)并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對應的證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了普及奧運會知識和提高學生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;
(Ⅱ)記甲組學生的成績分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學生小張、小李同時回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為 ,兩人回答每道題正確與否相互獨立.記小張答對題的道數(shù)為a,小李答對題的道數(shù)為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數(shù)學期望.

附:K2= ;其中n=a+b+c+d
獨立性檢驗臨界表:

P(K2>k0

0.100

0.050

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)a>0,b>0,函數(shù)f(x)=|x﹣a|﹣|x+b|的最大值為3.
(I) 求a+b的值;
(Ⅱ)設函數(shù)g(x)=﹣x2﹣ax﹣b,若對于x≥a均有g(x)<f(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的三個內(nèi)角A、B、C的對邊分別是a、b、c,其面積S=a2﹣(b﹣c)2 . 若a=2,則BC邊上的中線長的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體, 分別是棱的中點, 為棱上一點,且異面直線所成角的余弦值為.

1)證明: 的中點

2)求平面與平面所成銳二面角的余弦值.

【答案】1見解析2

【解析】試題分析:1為坐標原點,建立如圖所示的空間直角坐標系,不妨令正方體的棱長為2,,利用,解得,即可證得;

2)分別求得平面與平面的法向量,利用求解即可.

試題解析:

1)證明:以為坐標原點,建立如圖所示的空間直角坐標系.

不妨令正方體的棱長為2,

, , ,

,, ,

所以

所以,解得舍去),即的中點.

2)解:由(1)可得 ,

是平面的法向量,

.,.

易得平面的一個法向量為,

所以.

所以所求銳二面角的余弦值為.

點睛:空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉(zhuǎn)化為向量關系;(5)根據(jù)定理結論求出相應的角和距離.

型】解答
束】
22

【題目】已知橢圓的短軸長為2,且橢圓過點.

1)求橢圓的方程

2)設直線過定點,且斜率為若橢圓上存在兩點關于直線對稱, 為坐標原點,的取值范圍及面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結論;

(3)求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構在某一學校隨機抽取30名學生參加環(huán)保知識測試,測試成績(單位:分)如圖所示,假設得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為 ,則(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

同步練習冊答案