【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣ 與x=1時都取得極值,求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間.
【答案】解;(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b
由f′(﹣ )= ﹣ a+b=0,f′(1)=3+2a+b=0
解得,a=﹣ ,b=﹣2.
f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
x | (﹣∞,﹣ ) | ﹣ | (﹣ ,1) | 1 | (1,+∞) |
f′(x) | + | 0 | ﹣ | 0 | + |
f(x) | ↑ | 極大值 | ↓ | 極小值 | ↑ |
所以函數(shù)f(x)的遞增區(qū)間是(﹣∞,﹣ )和(1,+∞),遞減區(qū)間是(﹣ ,1)
【解析】求出f′(x),因為函數(shù)在x=﹣ 與x=1時都取得極值,所以得到f′(﹣ )=0且f′(1)=0聯(lián)立解得a與b的值,然后把a(bǔ)、b的值代入求得f(x)及f′(x),然后討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)的增減區(qū)間.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 (a>0,b>0)的中心為O,左焦點為F,P是雙曲線上的一點 =0且4 =3 ,則該雙曲線的離心率是( )
A.
B.
C.
+
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省數(shù)學(xué)學(xué)業(yè)水平考試成績分為A、B、C、D四個等級,在學(xué)業(yè)水平成績公布后,從該省某地區(qū)考生中隨機(jī)抽取60名考生,統(tǒng)計他們的數(shù)學(xué)成績,部分?jǐn)?shù)據(jù)如下:
等級 | A | B | C | D |
頻數(shù) | 24 | 12 | ||
頻率 | 0.1 |
(1)補(bǔ)充完成上述表格中的數(shù)據(jù);
(2)現(xiàn)按上述四個等級,用分層抽樣的方法從這60名考生中抽取10名,在這10名考生中,從成績A等和B等的所有考生中隨機(jī)抽取2名,求至少有一名成績?yōu)锳等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)是單調(diào)函數(shù),求實數(shù)的取值范圍;
(2)若,令(為自然對數(shù)的底數(shù)),求證:存在,使.
請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣5x+6=0},B={x|mx﹣1=0},且A∩B=B,求由實數(shù)m所構(gòu)成的集合M,并寫出M的所有子集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值是M,最小值是m,且M=2m,則實數(shù)a=( )
A.
B.2
C.
且2
D.
或2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù)中,f(x)與g(x)是同一函數(shù)的一組是( )
A.f(x)=|x|,g(x)=
B.f(x)=x,g(x)=( )2
C.f(x)= ,g(x)=x+1
D.f(x)=1,g(x)=x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時,良馬走了二十一日.
則以上說法錯誤的個數(shù)是( )個
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品的保鮮時間y(單位:小時)與儲藏溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e=2.718…為自然對數(shù)的底數(shù),k、b為常數(shù)).若該食品在0℃的保鮮時間是192小時,在22℃的保鮮時間是48小時,則該食品在33℃的保鮮時間是小時.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com