如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標(biāo)原點(diǎn)O的直線與C2相交于點(diǎn)A,B,定點(diǎn)M的坐標(biāo)為(0,-1),直線MA,MB分別與C1相交于點(diǎn)D,E.

(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.

(1)見解析(2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點(diǎn),過點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過P作PM⊥x軸于M,N為PM上一點(diǎn),且
(1)求點(diǎn)N的軌跡C的方程;
(2)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點(diǎn),則是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MA的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線Cy2=2px(p>0)的焦點(diǎn)為F,拋物線C與直線l1y=-x的一個(gè)交點(diǎn)的橫坐標(biāo)為8.
(1)求拋物線C的方程;
(2)不過原點(diǎn)的直線l2l1垂直,且與拋物線交于不同的兩點(diǎn)AB,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄A過定點(diǎn)(1,0),且與直線相切.
(1)求動(dòng)圓圓心的軌跡方程;
(2)設(shè)是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線的傾斜角分別為,①當(dāng)時(shí),求證直線恒過一定點(diǎn);
②若為定值,直線是否仍恒過一定點(diǎn),若存在,試求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,過的直線交橢圓于兩點(diǎn), 的周長(zhǎng)為8,且面積最大時(shí),為正三角形.

(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),證明:點(diǎn)在以為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點(diǎn),c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線與直線分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線lyx,圓Ox2y2=5,橢圓E=1(a>b>0)的離心率e,直線l被圓O截得的弦長(zhǎng)與橢圓的短軸長(zhǎng)相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案