已知圓,直線與圓相切,且交橢圓兩點,c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標(biāo)原點,若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值.

(1);(2);(3).

解析試題分析:本題主要考查圓的標(biāo)準方程、橢圓的標(biāo)準方程、直線的標(biāo)準方程、直線與圓的位置關(guān)系、直線與橢圓的位置關(guān)系等基礎(chǔ)知識,考查數(shù)形結(jié)合思想,考查轉(zhuǎn)化能力和計算能力.第一問,利用直線與圓相切,利用圓心到直線的距離為半徑,列出等式,求出;第二問,直線與橢圓相交,兩方程聯(lián)立,消參,得到關(guān)于的方程,利用兩根之和,兩根之積和向量的數(shù)量積聯(lián)立,得到,從而求出橢圓的方程;第三問,設(shè)直線的斜率,設(shè)出直線的方程,直線與橢圓聯(lián)立,消參,利用兩根之積,得到的值,則可以用表示坐標(biāo),利用點坐標(biāo),求出直線的方程,直線的方程與直線聯(lián)立,求出點坐標(biāo),利用兩點間距離公式,得到的表達式,利用均值定理求出最小值.
試題解析:(1)直線與圓相切,
所以                                 4分
(2) 將代入得
得:
設(shè)

因為           ②
由已知代人(2)
所以橢圓的方程為                                        8分
(Ⅲ)顯然直線AS的斜率存在,設(shè)為
依題意,由得:
設(shè)
,又B(2,0)所以  BS:
 
所以時:                                          12分
考點:1.點到直線的距離;2.向量的數(shù)量積;3.韋達定理;4.均值定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓C1:+=1(a>b>0)的左、右頂點分別為A,B,點P是雙曲線C2:-=1在第一象限內(nèi)的圖象上一點,直線AP,BP與橢圓C1分別交于C,D點,若S△ACD=S△PCD.

(1)求P點的坐標(biāo).
(2)能否使直線CD過橢圓C1的右焦點,若能,求出此時雙曲線C2的離心率;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標(biāo)原點O的直線與C2相交于點A,B,定點M的坐標(biāo)為(0,-1),直線MA,MB分別與C1相交于點D,E.

(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓與雙曲線x2-y2=0有相同的焦點,且離心率為.
(1)求橢圓的標(biāo)準方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標(biāo)原點,若=2,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設(shè)P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.

(1)求橢圓和圓的標(biāo)準方程;
(2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標(biāo)原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的焦點分別為,長軸長為6,設(shè)直線交橢圓C于A、B兩點,求線段AB的中點坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)橢圓的離心率,頂點的距離為,為坐標(biāo)原點.

(1)求橢圓的方程;
(2)過點作兩條互相垂直的射線,與橢圓分別交于兩點.
(。┰嚺袛帱c到直線的距離是否為定值.若是請求出這個定值,若不是請說明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且.圓的方程是
(1)求雙曲線的方程;
(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過圓上任意一點作圓的切線交雙曲線兩點,中點為,求證:

查看答案和解析>>

同步練習(xí)冊答案