【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】設(shè)球半徑為R,圓柱的體積為時(shí)圓柱的體積最大為 ,因此材料利用率= ,選C.

點(diǎn)睛:空間幾何體與球接、切問(wèn)題的求解方法

求解球與棱柱、棱錐的接、切問(wèn)題時(shí),一般過(guò)球心及接、切點(diǎn)作截面,把空間問(wèn)題轉(zhuǎn)化為平面圖形與圓的接、切問(wèn)題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解.

型】單選題
結(jié)束】
12

【題目】已知拋物線(xiàn) 在點(diǎn)處的切線(xiàn)與曲線(xiàn) 相切,若動(dòng)直線(xiàn)分別與曲線(xiàn)相交于、兩點(diǎn),則的最小值為( )

A. B. C. D.

【答案】D

【解析】

,

D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對(duì)滿(mǎn)足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的一個(gè)焦點(diǎn),過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn), 的面積為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若,過(guò)點(diǎn)且不與坐標(biāo)軸垂直的直線(xiàn)交橢圓于兩點(diǎn)線(xiàn)段的垂直平分線(xiàn)與軸交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) 的左右焦點(diǎn)分別為, 右支上的點(diǎn),線(xiàn)段的左支于點(diǎn),若是邊長(zhǎng)等于的等邊三角形,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為( )

A. B. C. D.

【答案】A

【解析】

即雙曲線(xiàn)的標(biāo)準(zhǔn)方程為,選A.

型】單選題
結(jié)束】
11

【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大;
(2)若sinB+sinC=1,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+cx(a>0),其圖象在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn) x﹣6y+21=0垂直,導(dǎo)函數(shù)
f′(x)的最小值為﹣12.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一網(wǎng)站營(yíng)銷(xiāo)部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如表:

網(wǎng)購(gòu)金額

(單位:千元)

頻數(shù)

頻率

3

9

15

18

合計(jì)

60

若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱(chēng)為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱(chēng)為“網(wǎng)購(gòu)探者”,已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為.

(1)確定,的值,并補(bǔ)全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二階矩陣M有特征值λ=8及對(duì)應(yīng)的一個(gè)特征向量 =[ ],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值.

查看答案和解析>>

同步練習(xí)冊(cè)答案