設(shè)數(shù)列的前n項和為,且滿足=2-,=1,2,3,….
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足=1,且,求數(shù)列的通項公式;
(3)設(shè),求數(shù)列的前項和為
(1)( n∈)(2) (=1,2,3,…)
(3)8-

試題分析:(1)因為=1時,=2,所以=1.
因為=2-,即=2,所以=2.
兩式相減:=0,即=0,故有
因為≠0,所以( n∈).
所以數(shù)列是首項=1,公比為的等比數(shù)列,
所以( ).                                           ……5分
(2)因為( n=1,2,3,…),所以.從而有
=1,,,…,( =2,3,…).
將這-1個等式相加,得
=1++…+=2-.(=2,3,…).
又因為=1,所以=3-( =2,3,…).
經(jīng)檢驗,對=1也成立,
=3- = (=1,2,3,…).                       ……10分
(3)因為,
所以.  ①
.      ②
①-②,得. 
=8-=8-( n=1,2,3,…).
……15分
點(diǎn)評:一般解數(shù)列的解答題時會給出一個遞推關(guān)系式,此時一般情況下會再寫一個作差,寫的時候要特別注意首項是否能取到,另外錯位相減法求和是高考中?嫉膬(nèi)容,要多加練習(xí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知數(shù)列的前n項和為,且
(Ⅰ)求數(shù)列通項公式;
(Ⅱ)若,,求證數(shù)列是等比數(shù)列,并求數(shù)
的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列的各項均為正實(shí)數(shù),且其前項和滿足。(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等差數(shù)列的前項和為,若,則的值為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:數(shù)列{a­n}的前n項和為Sn,滿足Sn=2an-2n(n∈N*) 
(1)求數(shù)列{a­n}的通項公式a­n;
(2)若數(shù)列{bn}滿足bn=log2(an+2),而Tn為數(shù)列的前n項和,求Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在各項都為正數(shù)的等比數(shù)列{an}中,首項a1=3,前三項和為21,則a3+ a4+ a5="("      )
A.33B.72C.84D.189

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列滿足(其中d為常數(shù),),則稱數(shù)列為“調(diào)和數(shù)列”,已知數(shù)列為調(diào)和數(shù)列,且,則的最大值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的前項和為,若三點(diǎn)共線,為坐標(biāo)原點(diǎn),且(直線不過點(diǎn)),則等于   (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,, 為數(shù)列的前n項和.
(1)求數(shù)列的通項公式和數(shù)列的前n項和
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案