【題目】如圖,在三棱柱ABCA1B1C1中,AB⊥側(cè)面BCC1B1,ACAB1

1)求證:平面ABC1⊥平面AB1C;

2)若ABBC2,∠BCC160°,求二面角BAC1B1的余弦值.

【答案】1)證明見解析(2

【解析】

1)設(shè)BC1B1CG,連結(jié)AG,推導(dǎo)出ABB1C,從而B1C⊥平面ABC1,由此能證明平面ABC1⊥平面AB1C

2)以G為坐標(biāo)原點(diǎn),GC1x軸,GB1y軸,過G作平面BCC1B1的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角BAC1B1的余弦值.

證明:(1)如圖,設(shè)BC1B1CG,連結(jié)AG

∵三棱柱的側(cè)面BCC1B1是平行四邊形,

GB1C的中點(diǎn),

ACAB1

∴△AB1C是等腰三角形,

B1CAG

AB⊥側(cè)面BCC1B1,且B1C平面BCC1B1,

ABB1C

又∵ABAGA,

B1C⊥平面ABC1

又∵B1C平面AB1C,

∴平面ABC1⊥平面AB1C

2)由(1)知B1C⊥平面ABC1,

B1CBC1

G為坐標(biāo)原點(diǎn),GC1x軸,GB1y軸,過G作平面BCC1B1的垂線為z軸,建立空間直角坐標(biāo)系,

B1CBC1,得到四邊形BCC1B1是菱形,

ABBC2,∠BCC160°,

GBGC11GCB1G,

G00,0),C11,00),B10,0),A(﹣1,02),

20,﹣2),1,0),

設(shè)平面AB1C1的法向量x,y,z),

,取x1,得1,1),

由(1)知0,,0)是平面ABC1的法向量,

設(shè)二面角BAC1B1的平面角為θ,

cosθ

∴二面角BAC1B1的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面是等腰梯形,,頂點(diǎn)在底面內(nèi)的射影恰為點(diǎn)

1)求證:平面;

2)若直線與底面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體ABCDE中,平面ABC,,F是線段AD的中點(diǎn),.

1)求證:

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)際上通常用年齡中位數(shù)指標(biāo)作為劃分國(guó)家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國(guó)全面放開二孩政策對(duì)我國(guó)人口年齡中位數(shù)的影響.據(jù)此,對(duì)我國(guó)人口年齡構(gòu)成的類型做出如下判斷:①建國(guó)以來直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開二孩政策之后我國(guó)仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓過點(diǎn),離心率為分別是橢圓的左、右頂點(diǎn),過右焦點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)記、的面積分別為、,若,求的值;

3)記直線的斜率分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子中裝有4個(gè)大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4.現(xiàn)每次有放回地從中任意取出一個(gè)小球,直到標(biāo)有偶數(shù)的球都取到過就停止.小明用隨機(jī)模擬的方法估計(jì)恰好在第4次停止摸球的概率,利用計(jì)算機(jī)軟件產(chǎn)生隨機(jī)數(shù),每1組中有4個(gè)數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下21組隨機(jī)數(shù):由此可以估計(jì)恰好在第4次停止摸球的概率為(

1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312

2412 1413 4331 2234 4422 3241 4331 4234

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為篩查在人群中傳染的某種病毒,現(xiàn)有兩種檢測(cè)方法:

1)抗體檢測(cè)法:每個(gè)個(gè)體獨(dú)立檢測(cè),每一次檢測(cè)成本為80元,每個(gè)個(gè)體收取檢測(cè)費(fèi)為100元.

2)核酸檢測(cè)法:先合并個(gè)體,其操作方法是:當(dāng)個(gè)體不超過10個(gè)時(shí),把所有個(gè)體合并在一起進(jìn)行檢測(cè).

當(dāng)個(gè)體超過10個(gè)時(shí),每10個(gè)個(gè)體為一組進(jìn)行檢測(cè).若該組檢測(cè)結(jié)果為陰性(正常),則只需檢測(cè)一次;若該組檢測(cè)結(jié)果為陽性(不正常),則需再對(duì)每個(gè)個(gè)體按核酸檢測(cè)法重新獨(dú)立檢測(cè),共需檢測(cè)k+1次(k為該組個(gè)體數(shù),1≤k≤10kN*).每一次檢測(cè)成本為160元.假設(shè)在接受檢測(cè)的個(gè)體中,每個(gè)個(gè)體的檢測(cè)結(jié)果是陽性還是陰性相互獨(dú)立,且每個(gè)個(gè)體是陽性結(jié)果的概率均為p0p1).

(Ⅰ)現(xiàn)有100個(gè)個(gè)體采取抗體檢測(cè)法,求其中恰有一個(gè)檢測(cè)出為陽性的概率;

(Ⅱ)因大多數(shù)人群篩查出現(xiàn)陽性的概率很低,且政府就核酸檢測(cè)法給子檢測(cè)機(jī)構(gòu)一定的補(bǔ)貼,故檢測(cè)機(jī)構(gòu)推出組團(tuán)選擇核酸檢測(cè)優(yōu)惠政策如下:無論是檢測(cè)一次還是k+1次,每組所有個(gè)體共收費(fèi)700元(少于10個(gè)個(gè)體的組收費(fèi)金額不變).已知某企業(yè)現(xiàn)有員工107人,準(zhǔn)備進(jìn)行全員檢測(cè),擬準(zhǔn)備9000元檢測(cè)費(fèi),由于時(shí)間和設(shè)備條件的限制,采用核酸檢測(cè)法合并個(gè)體的組數(shù)不得高于參加采用抗體檢測(cè)法人數(shù),請(qǐng)?jiān)O(shè)計(jì)一個(gè)合理的的檢測(cè)安排方案;

(Ⅲ)設(shè),現(xiàn)有nnN*2≤n≤10)個(gè)個(gè)體,若出于成本考慮,僅采用一種檢測(cè)方法,試問檢測(cè)機(jī)構(gòu)應(yīng)采用哪種檢測(cè)方法?(ln3≈1.099ln4≈1.386,ln5≈1.609,ln6≈1.792

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在極坐系中,點(diǎn)繞極點(diǎn)順時(shí)針旋轉(zhuǎn)角得到點(diǎn).為原點(diǎn),極軸為軸非負(fù)半軸,并取相同的單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線逆時(shí)針旋轉(zhuǎn)得到曲線.

1)求曲線的直角坐標(biāo)方程;

2)點(diǎn)的極坐標(biāo)為,直線過點(diǎn)且與曲線交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓為常數(shù)且)與直線有且只有一個(gè)公共點(diǎn)

(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的方程;

(Ⅱ)過橢圓的兩焦點(diǎn),作直線的垂線,垂足分別為,,求四邊形面積的最大值(用表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案