【題目】如圖,在四棱錐中,平面平面,,,,,.
(Ⅰ)證明:.
(Ⅱ)求平面和平面所成角(銳角)的余弦值.
【答案】(1)詳見解析(2)
【解析】
試題 (Ⅰ)由已知得,,,∴ ,由勾股定理得 ,從而平面,由此能證明.
(Ⅱ)取AD的中點O,連結OE,則,取AB的中點F,連結OF,則,以O為原點,建立空間直角坐標系,求出平面CDE的法向量和平面CDE的一個法向量,由此能求出平面ADE和平面CDE所成角(銳角)的余弦值.
試題解析:(Ⅰ),,∴,
同理,,∴,
又∵,∴由勾股定理可知,,
又∵ 平面平面,平面平面,平面,
∴平面,
又∵平面,
∴.
(Ⅱ)解:取的中點,連結,則,
∵ 平面平面,平面平面,
∴平面,
取的中點,連結,
以為原點,建立如圖所示的空間直角坐標系,
則,,,,,
設平面的法向量為,
則即,令,則,,
∴ 平面的法向量,
又平面的一個法向量為,
設平面和平面所成角(銳角)為,
則,
∴ 平面和平面所成角(銳角)的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線,曲線.以極點為坐標原點,極軸為軸正半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標方程;
(2)與交于不同的四點,這四點在上排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)準備投入適當?shù)膹V告費對甲產(chǎn)品進行促銷宣傳,在一年內預計銷量(萬件)與廣告費(萬元)之間的函數(shù)關系為,已知生產(chǎn)此產(chǎn)品的年固定投入為萬元,每生產(chǎn)1萬件此產(chǎn)品仍需要再投入30萬元,且能全部銷售完,若每件甲產(chǎn)品銷售價格(元)定為:“平均每件甲產(chǎn)品生產(chǎn)成本的150%”與“年平均每件產(chǎn)品所占廣告費的50%”之和,則當廣告費為1萬元時,該企業(yè)甲產(chǎn)品的年利潤比不投入廣告費時的年利潤增加了__________萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(MD),有x+l∈D,且f(x+l)f(x),則稱f(x)為M上的l高調函數(shù).現(xiàn)給出下列命題:①函數(shù)f(x)=2﹣x為R上的1高調函數(shù);②函數(shù)f(x)=sin2x為R上的π高調函數(shù);③如果定義域為[﹣1,+∞)的函數(shù)f(x)=x2為[﹣1,+∞)上m高調函數(shù),那么實數(shù)m的取值范圍是[2,+∞);④函數(shù)f(x)=lg(|x﹣2|+1)為[1,+∞)上的2高調函數(shù).其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A. “”是“”成立的充分不必要條件
B. 命題,則
C. 為了了解800名學生對學校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40
D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的首項,且時,,,,.
(Ⅰ)若,求,,,.
(Ⅱ)若,證明:.
(Ⅲ)若,求所有的正整數(shù),使得對于任意,均有成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),若不等式的解集為(1,4),且方程f(x)=x有兩個相等的實數(shù)根。
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在上恒成立,求實數(shù)m的取值范圍;
(3)解不等式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1,且E,F分別是BC,B1C1中點.
(1)求證:A1B∥平面AEC1;
(2)求直線AF與平面AEC1所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com