【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且pq是共線向量.

(1)求A的大;

(2)求函數(shù)y=2sin2B+cos(取最大值時,角B的大小.

【答案】(1)A=60°(2)B=60°

【解析】試題分析:

(1)利用向量平行的充要條件求得 ,結合銳角三角形可得A=60°;

(2)整理函數(shù)的解析式可得y=1+sin(2B-30°)結合角的范圍可得B=60°時,函數(shù)取最大值2.

試題解析:

解:(1)p∥q

∴(2-2sin A)(1+sin A)-(cos A+sin A)(sin A-cos A)=0

∴sin2A,sin A

∵△ABC為銳角三角形,∴A=60°.

(2)y=2sin2B+cos()=2sin2B+cos(

=2sin2B+cos(2B-60°)=1-cos 2B+cos(2B-60°)

=1-cos 2B+cos 2Bcos 60°+sin 2Bsin 60°

=1-cos 2Bsin 2B=1+sin(2B-30°)

當2B-30°=90°,即B=60°時,函數(shù)取最大值2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個n=1,2,3,4,現(xiàn)從袋中任取一球,X表示所取球的標號.

1求X的分布列,均值和方差;

2若Y=aX+b,EY=1,DY=11,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1求曲線在點處的切線方程;

2求函數(shù)的單調區(qū)間及極值;

3成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列是首項為0的遞增數(shù)列,,滿足:對于任意的總有兩個不同的根,則的通項公式為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的一個零點為-2,當時最大值為0

1的值;

2若對,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為已知

I)設,證明數(shù)列是等比數(shù)列;

II)求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設熊貓居室的一面墻長為2

表示墻的長;

假設所建熊貓居室的墻壁造價在墻壁高度一定的前提下為每米1000元,請將墻壁的總造價表示為的函數(shù);

為何值時,墻壁的總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點在拋物線上,過點垂直于軸,垂足為,設.

求點的軌跡的方程;

設點,過點的直線交軌跡兩點,直線的斜率分別為,求的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(必須列式,不能只寫答案,答案用數(shù)字表示)有4個不同的球,四個不同的盒子,把球全部放入盒內.

(1)求共有多少種放法;

(2)求恰有一個盒子不放球,有多少種放法;

(3)求恰有兩個盒內不放球,有多少種放法;

查看答案和解析>>

同步練習冊答案