【題目】如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設熊貓居室的一面墻長為2

表示墻的長;

假設所建熊貓居室的墻壁造價在墻壁高度一定的前提下為每米1000元,請將墻壁的總造價表示為的函數(shù);

為何值時,墻壁的總造價最低?

【答案】1 米;2;3當x=4時,墻壁的總造價最低.

【解析】

試題分析:1根據(jù)面積,可得結(jié)果;2總造價包含5面墻的造價,即,,相加就是總的造價;3根據(jù)2的結(jié)果,可根據(jù)基本不等式求最值.

試題解析:1矩形熊貓居室的總面積=AB*AD=24平方米,設AD=x米

AB=2x6

2由題意得:墻壁的總造價函數(shù)y=其中2x6,

3y==24000

當且僅當,即x=4時取等號;

x=4時,y有最小值24000;所以,當x=4時,墻壁的總造價最低.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點E為正方形ABCDCD上異于點CD的動點,將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列三個說法中正確的個數(shù)是

存在點E使得直線SA平面SBC

平面SBC內(nèi)存在直線與SA平行

平面ABCE內(nèi)存在直線與平面SAE平行

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為1,分別是棱,的中點,過直線的平面分別與棱交于,設,,給出以下四個命題:

四邊形為平行四邊形;

若四邊形面積,,有最小值;

若四棱錐的體積,,則為常函數(shù);

若多面體的體積,則為單調(diào)函數(shù).

其中假命題為(

A. B. C.③④ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且pq是共線向量.

(1)求A的大。

(2)求函數(shù)y=2sin2B+cos(取最大值時,角B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1時,求曲線在點處的切線的斜率;

2時,求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點的橢圓經(jīng)過點,且點為其右焦點.

)求橢圓的標準方程;

)是否存在平行于的直線,使得直線與橢圓有公共點,且直線的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年的蔬菜銷售收入均為50萬元,設表示前年的純利潤總和=前年的總收入年的總支出投資額.

1該廠從第幾年開始盈利?

2若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方案:

當年平均利潤達到最大時,以48萬元出售該廠;

當純利潤總和達到最大時,以16萬元出售該廠,

問哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的對稱軸為.

1)求函數(shù)的最小值及取得最小值時的值;

2)試確定的取值范圍,使至少有一個實根;

3)若,存在實數(shù),對任意,使恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)俄羅斯新羅西斯克2015517日電 記者吳敏、鄭文達報道:當?shù)貢r間17日,參加中俄海上聯(lián)合-2015()”軍事演習的9艘艦艇抵達地中海預定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時,輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛.假設該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.

(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?

(2)為保證小艇在30分鐘內(nèi)(30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說明你的推理過程;

(3)是否存在v,使得小艇以v海里/小時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案