【題目】在下列命題中:①在中,,,,則解三角形只有唯一解的充要條件是:;②當時,;③在中,若,則中一定為鈍角三角形;④扇形圓心角為銳角,周長為定值,則它面積最大時,一定有;⑤函數(shù)的單增區(qū)間為,其中真命題的序號為_____.
【答案】①②③⑤;
【解析】
對每一個命題逐一分析判斷得解. ①,利用正弦定理分析判斷;②,利用反三角函數(shù)的圖象分析判斷;③,利用反證法判斷;④,利用基本不等式判斷得解;⑤,利用復合函數(shù)的單調性分析求解.
①,由正弦定理得,因為三角形有唯一解,所以或,所以該命題正確;
②,畫圖得
當時,,所以該命題是真命題;
③假設△ABC是銳角三角形,,
所以,顯然矛盾;假設△ABC是直角三角形,顯然A,B不可能是直角,所以C是直角,此時,與已知矛盾,所以中一定為鈍角三角形,所以該命題是真命題;
④,設扇形的半徑為,扇形圓心角為銳角,弧長為,周長為定值,則它面積,當且僅當即時取最大值,但是,不是銳角,所以該命題不正確;
⑤,因為函數(shù)是一個減函數(shù),所以函數(shù)的單增區(qū)間為的減區(qū)間,所以該命題是真命題.
故答案為:①②③⑤
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓:的焦距為,直線截圓:與橢圓所得的弦長之比為,橢圓與軸正半軸的交點分別為.
(1)求橢圓的標準方程;
(2)設點(且)為橢圓上一點,點關于軸的對稱點為,直線,分別交軸于點,.試判斷是否為定值?若是求出該定值,若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點,三棱錐的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點D,當D在什么位置時,和的夾角大小為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓過點,焦點,圓的直徑為.
(1)求橢圓及圓的方程;
(2)設直線與圓相切于第一象限內的點,直線與橢圓交于兩點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在處的切線方程;
(2)令,已知函數(shù)有兩個極值點,且,求實數(shù)的取值范圍;
(3)在(2)的條件下,若存在,使不等式對任意(取值范圍內的值)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com