已知直線l1、l2分別與拋物線x2=4y相切于點(diǎn)A、B,且A、B兩點(diǎn)的橫坐標(biāo)分別為a、b(a、b∈R).
(1)求直線l1、l2的方程;
(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點(diǎn)R,經(jīng)過P、Q、R三點(diǎn)作圓C.
①當(dāng)a=4,b=-2時,求圓C的方程;
②當(dāng)a,b變化時,圓C是否過定點(diǎn)?若是,求出所有定點(diǎn)坐標(biāo);若不是,請說明理由.
(1)l1的方程為y=x-;l2的方程為y=x-(2)①C的方程為x2+y2-x+7y-8=0,②圓C過定點(diǎn)F(0,1)
(1)A,B,記f(x)=,f′(x)=,則l1的方程為y-(x-a),即y=x-;同理得l2的方程為y=x-.
(2)由題意a≠b且a、b不為零,聯(lián)立方程組可求得P,Q,R.
∴經(jīng)過P、Q、R三點(diǎn)的圓C的方程為x+(y-1)(y-ab)=0,
當(dāng)a=4,b=-2時,圓C的方程為x2+y2-x+7y-8=0,
顯然當(dāng)a≠b且a、b不為零時,圓C過定點(diǎn)F(0,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求過直線與已知圓的交點(diǎn),且在兩坐標(biāo)軸上的四個截距之和為8的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線與圓心為的圓相交于兩點(diǎn),且,則實(shí)數(shù)的值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C過點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.
(1)求圓C的方程;
(2)過點(diǎn)P作兩條相異直線分別與圓C相交于A、B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知AC、BD為圓O:x2+y2=4的兩條相互垂直的弦,垂足為M(1,),則四邊形ABCD的面積的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓心在y軸上,半徑為1,且過點(diǎn)(1,2)的圓的方程為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定點(diǎn)M(-3,4),動點(diǎn)N在圓x2+y2=4上運(yùn)動,以O(shè)M,ON為鄰邊作平行四邊形MONP,則點(diǎn)P的軌跡方程為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求圓心在拋物線x2=4y上,且與直線x+2y+1=0相切的面積最小的圓
的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是半圓的直徑,的延長線上,與半圓相切于點(diǎn),,若,,則         .

查看答案和解析>>

同步練習(xí)冊答案