【題目】某班同學(xué)準(zhǔn)備參加學(xué)校在寒假里組織的社區(qū)服務(wù)、進(jìn)敬老院、參觀工廠民俗調(diào)查、環(huán)保宣傳五個項(xiàng)目的社會實(shí)踐活動,每天只安排一項(xiàng)活動,并要求在周一至周五內(nèi)完成.其中參觀工廠環(huán)保宣講兩項(xiàng)活動必須安排在相鄰兩天,民俗調(diào)查活動不能安排在周一.則不同安排方法的種數(shù)是( )

A.48 B.24 C.36 D.64

【答案】C

【解析】

試題分析:當(dāng)星期一排星期二參觀工廠和環(huán)保宣講活動時有種,星期三至星期五可以隨便安排剩下的活動有種,共種,當(dāng)當(dāng)星期一不排參觀工廠或環(huán)保宣講活動時,從社區(qū)服務(wù)或進(jìn)敬老院中選一項(xiàng)活動來排星期一有種,將參觀工廠與環(huán)保宣講兩項(xiàng)活動捆綁在一起與剩下的2項(xiàng)活動排星期二至星期五共有種,共種,據(jù)分類計(jì)數(shù)原理知不同的安排方法共36種

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(1)求C的直角坐標(biāo)方程;
(2)直線l: 為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中, ,矩形所在的平面與平面垂直,且

(Ⅰ)求證:平面平面

(Ⅱ)若為線段上一點(diǎn),平面與平面所成的銳二面角為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的個數(shù)有( )
(1)數(shù)列{an},{bn}都是等差數(shù)列,則數(shù)列{an+bn}也一定是等差數(shù)列;
(2)數(shù)列{an},{bn}都是等比數(shù)列,則數(shù)列{an+bn}也一定是等比數(shù)列;
(3)等差數(shù)列{an}的首項(xiàng)為a1 , 公差為d,取出數(shù)列中的所有奇數(shù)項(xiàng),組成一個新的數(shù)列,一定還是等差數(shù)列;
(4) G為a,b的等比中項(xiàng)G2=ab.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足: 3n2an,an≠0,n≥2,nN*

(1)若數(shù)列{an}是等差數(shù)列,求a的值;

(2)確定a的取值集合M,使a∈M時,數(shù)列{an}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司過去五個月的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

40

60

50

70

工作人員不慎將表格中y的第一個數(shù)據(jù)丟失.已知y對x呈線性相關(guān)關(guān)系,且回歸方程為 =6.5x+17.5,則下列說法:
①銷售額y與廣告費(fèi)支出x正相關(guān);
②丟失的數(shù)據(jù)(表中 處)為30;
③該公司廣告費(fèi)支出每增加1萬元,銷售額一定增加6.5萬元;
④若該公司下月廣告投入8萬元,則銷售額為70萬元.
其中,正確說法有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,若輸出的結(jié)果為 ,則判斷框內(nèi)可以填(

A.k>98?
B.k≥99?
C.k≥100?
D.k>101?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分為14已知定義域?yàn)镽的函數(shù)是奇函數(shù)

1求a,b的值;

2若對任意的tR,不等式ft2-2t+f2t2-k<0恒成立,求k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列{an}的前n項(xiàng)和為Sn , 滿足a1=1,Sn=an+1+n,則其通項(xiàng)公式為

查看答案和解析>>

同步練習(xí)冊答案