【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時,輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個互不相等的實數(shù)解時,實數(shù)的取值范圍.

【答案】1見解析2.

【解析】試題分析:(1)根據(jù)輸入的的值為時,輸出結(jié)果;當(dāng)輸入的的值為2時,輸出結(jié)果;(2)根據(jù)程序框圖,可得,結(jié)合函數(shù)圖象及有三個互不相等的實數(shù)解即可求出實數(shù)的取值范圍.

試題解析:(1)當(dāng)輸入的的值為時,輸出的

當(dāng)輸入的的值為2時,輸出的

(2)根據(jù)程序框圖,可得

當(dāng)時, ,此時單調(diào)遞增,且

當(dāng)時, ;

當(dāng)時, 上單調(diào)遞減,在上單調(diào)遞增,且.

結(jié)合圖象,知當(dāng)關(guān)于的方程有三個互不相等的實數(shù)解時,實數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
(1)求拋物線C的方程;
(2)設(shè)直線y=kx+b與拋物線C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,過弦AB中點M作平行于x軸的直線交拋物線于點D,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的函數(shù),且對任意都有 ,且滿足,,則=

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:

若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”.已知“網(wǎng)購達(dá)人”與“網(wǎng)購探者”人數(shù)的比例為2:3.

(1)確定的值,并補全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日被評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在實數(shù)的原有運算法則中,補充定義新運算“”如下:

當(dāng)時,;當(dāng)時,,

已知函數(shù),則滿足的實數(shù)m的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的一個焦點,過原點的直線與橢圓交于兩點, 的面積為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若,過點且不與坐標(biāo)軸垂直的直線交橢圓于兩點線段的垂直平分線與軸交于點,求點橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:

網(wǎng)購金額

(單位:千元)

頻數(shù)

頻率

3

9

15

18

合計

60

若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達(dá)人”與“網(wǎng)購探者”人數(shù)的比例為.

(1)確定,,,的值,并補全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.

查看答案和解析>>

同步練習(xí)冊答案