【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點且關于軸對稱的兩條直線分別交曲線、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.

【答案】(1) 為參數(shù)).(2)

【解析】試題分析:(Ⅰ)首先求得的普通方程,由此可求得的參數(shù)方程;(Ⅱ)設四邊形的周長為,點,然后得到的關系式,從而利用輔助角公式求得點的直角坐標點,從而求得的普通方程.

試題解析:(Ⅰ) 為參數(shù)).

(Ⅱ)設四邊形的周長為,設點,

,

,

所以,當)時, 取最大值,

此時,

所以, , ,

此時, , 的普通方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,圓的直角坐標方程為,直線的參數(shù)方程為為參數(shù)),射線的極坐標方程為

1)求圓和直線的極坐標方程;

(2)已知射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x (℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程x;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 ,定點(常數(shù))的直線與曲線相交于、兩點.

(1)若點的坐標為,求證:

(2)若,以為直徑的圓的位置是否恒過一定點?若存在,求出這個定點,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)寫出直線的普通方程與曲線的直角坐標方程;

(Ⅱ)設曲線經(jīng)過伸縮變換得到曲線,若點,直線交與 ,求, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左頂點為,右焦點為, 為原點, 軸上的兩個動點,且,直線分別與橢圓交于, 兩點.

 

(Ⅰ)求的面積的最小值;

(Ⅱ)證明: , 三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有零點,求的取值范圍;

(2)若對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知處的極值為0.

(1)求常數(shù)的值;

(2)求的單調(diào)區(qū)間;

(3)方程在區(qū)間上有三個不同的實根時,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)若,求不等式的解集;

(2)若方程有三個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案