【題目】已知函數(shù)fx)=(1+xt1的定義域為(﹣1,+∞),其中實數(shù)t滿足t≠0t≠1.直線lygx)是fx)的圖象在x0處的切線.

1)求l的方程:ygx);

2)若fxgx)恒成立,試確定t的取值范圍;

3)若a1,a2∈(0,1),求證: .注:當α為實數(shù)時,有求導公式(xααxα1.

【答案】1;(2;(3)見解析

【解析】

1)根據(jù)函數(shù)的解析式求出導函數(shù)的解析式,求出切點坐標及切線的斜率(切點的導函數(shù)值),可得直線的方程;

2)構造函數(shù),若恒成立,即上恒成立,即上的最小值不小于0,分類討論后可得滿足條件的的取值范圍;

3)分兩種情況證明結論,并構造函數(shù),先征得是單調(diào)減函數(shù),進而得到結論.

1)∵fx)=(1+xt1

f'x)=t1+xx1,

f'0)=t,

f0)=0,

l的方程為:ytx

2)令hx)=fx)﹣gx)=(1+xttx1,

h'x)=t1+xt1tt[1+xt11]

t0時,(1+xt11單調(diào)遞減,

x0時,h'x)=0

x∈(﹣1,0),h'x)<0,hx)單調(diào)遞減;

x∈(0,+∞),h'x)>0,hx)單調(diào)遞增.

x0hx)的唯一極小值點,

hxh0)=0,fxgx)恒成立;

0t1時,(1+xt11單調(diào)遞減,

x0時,h'x)=0

x∈(﹣1,0),h'x)>0hx)單調(diào)遞增;

x∈(0,+∞),h'x)<0,hx)單調(diào)遞減.

x0hx)的唯一極大值點,

hxh0)=0,不滿足fxgx)恒成立;

t1時,(1+xt11單調(diào)遞增,

x0時,h'x)=0

x∈(﹣10),h'x)<0,hx)單調(diào)遞減;

x∈(0,+∞),h'x)>0,hx)單調(diào)遞增.

x0hx)的唯一極小值點,

hxh0)=0,fxgx)恒成立;

綜上,t∈(﹣,0)∪(1,+∞);

證明:(3)當a1a2,不等式顯然成立;

a1a2時,不妨設a1a2

,x[a1,a2]

下證φx)是單調(diào)減函數(shù):

易知a1a2∈(﹣1,0),1+a1a2∈(0,1),

由(2)知當t1,(1+xt1+tx,x[a1,a2]

φ'x)<0

φx)在[a1,a2]上單調(diào)遞減.

φa1)>φa2),

.

綜上,成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)現(xiàn)有A.B兩套設備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數(shù)分布表.

1A設備生產(chǎn)的樣本頻率分布直方圖

1B設備生產(chǎn)的樣本頻數(shù)分布表

質(zhì)量指標值

頻數(shù)

2

18

48

14

16

2

1)請估計A.B設備生產(chǎn)的產(chǎn)品質(zhì)量指標的平均值;

2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標值落在內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應該對哪一套設備加大生產(chǎn)規(guī)模?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于正整數(shù),如果個整數(shù)滿足

,則稱數(shù)組的一個正整數(shù)分拆”.均為偶數(shù)的正整數(shù)分拆的個數(shù)為均為奇數(shù)的正整數(shù)分拆的個數(shù)為.

()寫出整數(shù)4的所有正整數(shù)分拆”;

()對于給定的整數(shù),設的一個正整數(shù)分拆,且,求的最大值;

()對所有的正整數(shù),證明:;并求出使得等號成立的的值.

(:對于的兩個正整數(shù)分拆,當且僅當時,稱這兩個正整數(shù)分拆是相同的.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解一個智力游戲是否與性別有關,從某地區(qū)抽取男女游戲玩家各200請客,其中游戲水平分為高級和非高級兩種.

1)根據(jù)題意完善下列列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%以上的把握認為智力游戲水平高低與性別有關?

性別

高級

非高級

合計

40

140

合計

2)按照性別用分層抽樣的方法從這些人中抽取10人,從這10人中抽取3人作為游戲參賽選手;

若甲入選了10人名單,求甲成為參賽選手的概率;

設抽取的3名選手中女生的人數(shù)為,求的分布列和期望.

附表:,其中

0.010

0.05

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,得到甲、乙兩位學生成績的莖葉圖.

1)現(xiàn)要從中選派一人參加數(shù)學競賽,對預賽成績的平均值和方差進行分析,你認為哪位學生的成績更穩(wěn)定?請說明理由;

2)若將頻率視為概率,求乙同學在一次數(shù)學競賽中成績高于84分的概率;

3)求在甲同學的8次預賽成績中,從不小于80分的成績中隨機抽取2個成績,列出所有結果,并求抽出的2個成績均大于85分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年國際籃聯(lián)籃球世界杯,將于2019年在的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學從全校學生中隨機抽取了名學生,對是否收看籃球世界杯賽事的情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

會收看

不會收看

男生

60

20

女生

20

20

(1)根據(jù)上表說明,能否有的把握認為收看籃球世界杯賽事與性別有關?

(2)現(xiàn)從參與問卷調(diào)查且收看籃球世界杯賽事的學生中,采用按性別分層抽樣的方法選取人參加2019年國際籃聯(lián)籃球世界杯賽志愿者宣傳活動.

(i)求男、女學生各選取多少人;

(ii)若從這人中隨機選取人到校廣播站開展2019年國際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到名男生的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年國際籃聯(lián)籃球世界杯將于2019831日至915日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳國際籃聯(lián)籃球世界杯,某大學從全校學生中隨機抽取了120名學生,對是否會收看該國際籃聯(lián)籃球世界杯賽事的情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

會收看

不會收看

男生

60

20

女生

20

20

1)根據(jù)上表說明,能否有99%的把握認為是否會收看該國際籃聯(lián)籃球世界杯賽事與性別有關?

2)甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為.

i)求乙投球的命中率

ii)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望.

附:,其中,

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解高中生作文成績與課外閱讀量之間的關系,某研究機構隨機抽取了100名高中生,根據(jù)問卷調(diào)查,得到以下數(shù)據(jù):

作文成績優(yōu)秀

作文成績一般

總計

課外閱讀量較大

35

20

55

課外閱讀量一般

15

30

45

總計

50

50

100

1)根據(jù)列聯(lián)表,能否有99.5%的把握認為課外閱讀量的大小與作文成績優(yōu)秀有關;

2)若用分層抽樣的方式從課外閱讀量一般的高中生中選取了6名高中生,再從這6名高中生中隨機選取2名進行面談,求面談的高中生中至少有1名作文成績優(yōu)秀的概率.

附:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案