【題目】函數(shù) 的定義域是;值域是

【答案】[0,+∞);[0,1)
【解析】解:∵1﹣ ≥0,
∴x≥0,
故定義域是[0,+∞).
>0,∴1﹣ <1,
,
∴值域是[0,1)
所以答案是:[0,+∞),[0,1).
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的定義域及其求法和函數(shù)的值域,掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)討論函數(shù)的單調(diào)性;

(II)對(duì)于任意,有,求實(shí)數(shù)的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為實(shí)數(shù),f(x)=(x2﹣4)(x﹣a).
(1)求導(dǎo)數(shù)f′(x);
(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , 底面 ,且.

(1)若上一點(diǎn),且,證明:平面平面.

(2)若為棱上一點(diǎn),且平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且 ,則滿足條件的函數(shù)f(x)有(
A.6個(gè)
B.10個(gè)
C.12個(gè)
D.16個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),且同時(shí)滿足下列條件:f(1﹣a)+f(1﹣a2)<0.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,M是正方體ABCD﹣A1B1C1D1的棱DD1的中點(diǎn),給出下列命題
①過M點(diǎn)有且只有一條直線與直線AB、B1C1都相交;
②過M點(diǎn)有且只有一條直線與直線AB、B1C1都垂直;
③過M點(diǎn)有且只有一個(gè)平面與直線AB、B1C1都相交;
④過M點(diǎn)有且只有一個(gè)平面與直線AB、B1C1都平行.
其中真命題是(

A.②③④
B.①③④
C.①②④
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位N名員工參加“社區(qū)低碳你我他”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布圖如圖所示,下表是年齡的頻率分布表.

(1)現(xiàn)要從年齡較小的第組中用分層抽樣的方法抽取6人,則年齡第組人數(shù)分別是多少?

(2)在(1)的條件下,從這6中隨機(jī)抽取2參加社區(qū)宣傳交流活動(dòng),求恰有2人在第3組的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案