16.定義在R上的函數(shù)f(x)滿(mǎn)足f(x)+f(x+5)=16,當(dāng)x∈(-1,4]時(shí),f(x)=x2-2x,則函數(shù)f(x)在區(qū)間[0,2016]上的零點(diǎn)個(gè)數(shù)是605.

分析 由f(x)+f(x+5)=16,可得f(x+5)+f(x+10)=16,兩式相減,可得f(x)為周期為10的函數(shù),作圖分析可知,當(dāng)x∈(-1,9)時(shí),f(x)=x2-2x有三個(gè)零點(diǎn),從而可得答案,

解答 解:∵f(x)+f(x+5)=16,
f(x+5)+f(x+10)=16,
兩式相減得,f(x)=f(x+10),
故f(x)為周期為10的函數(shù),x∈(-1,9)時(shí),
令f(x)=x2-2x=0得:x2=2x,
在同一坐標(biāo)系中作出y=x2與y=2x的圖象如下,

由圖知,當(dāng)x∈(-1,4]時(shí),函數(shù)f(x)=x2-2x有3個(gè)零點(diǎn)(y軸右側(cè)的兩個(gè)零點(diǎn)為2和4),
∵f’(x)=2x-2xln2,∴當(dāng)x∈(4,9)時(shí),f’(x)<0,函數(shù)單調(diào)減,即無(wú)零點(diǎn),
綜上:函數(shù)f(x)在一個(gè)周期內(nèi)有三個(gè)零點(diǎn),2016=10×201+6,
就是說(shuō)在區(qū)間在[0,2016]上有201個(gè)完整周期,這201個(gè)周期內(nèi)共603個(gè)零點(diǎn),在[0,6]內(nèi)有二個(gè)零點(diǎn),
∴函數(shù)f(x)在[0,2016]上共有605個(gè)零點(diǎn),
故答案為:605.

點(diǎn)評(píng) 本題考查抽象函數(shù)及其應(yīng)用,求得函數(shù)的周期為10,且一個(gè)周期內(nèi)函數(shù)f(x)有三個(gè)零點(diǎn)是關(guān)鍵,也是難點(diǎn),考查分析與作圖能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)滿(mǎn)足f(-x)=f(x),f(x+1)=-$\frac{1}{f(x)}$,且當(dāng)x∈[-1,0]時(shí),f(x)=|x|.若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.$({0,\;\frac{1}{2}}]$B.$({0,\;\frac{1}{3}}]$C.$({0,\;\frac{1}{4}}]$D.$[{\frac{1}{4},\;\;\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中,對(duì)定義域中的任一實(shí)數(shù)x均滿(mǎn)足f($\sqrt{2}x$)=2f(x)的是(  )
A.f(x)=log2xB.f(x)=x|x|C.f(x)=x2+1D.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.記${\left.{\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|_m}$=a0+a1×m+…+an-1×mn-1+an×mn,其中n≤m,m、n均為正整數(shù),ak∈{0,1,2,…,m-1}(k=0,1,2,…,n)且an≠0;
(1)計(jì)算${\left.{\overline{2016}}\right|_7}$=699;
(2)設(shè)集合A(m,n)=$\left\{{{{\left.{\left.x\right|x=\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|}_m}}\right\}$,則A(m,n)中所有元素之和為$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)f(x)=|x-3|+|x-4|.
(1)求函數(shù)$g(x)=\sqrt{2-f(x)}$的定義域;
(2)若存在實(shí)數(shù)x滿(mǎn)足f(x)≤ax-1,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ln(x2+1),g(x)=$\frac{1}{{x}^{2}-1}$+a.
(1)若f(x)的一個(gè)極值點(diǎn)到直線(xiàn)l:2$\sqrt{2}$x+y+a+5=0的距離為1,求a的值;
(2)求方程f(x)=g(x)的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.地球的半徑為R,在北緯45°東經(jīng)30°有一座城市A,在北緯45°西經(jīng)60°有一座城市B,則坐飛機(jī)從A城市飛到B城市的最短距離是$\frac{π}{3}R$.(飛機(jī)的飛行高度忽略不計(jì))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示,點(diǎn)A、B、C是圓O上的三點(diǎn),線(xiàn)段OC與線(xiàn)段AB交于圓內(nèi)一點(diǎn)M,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,(m>0,n>0),m+n=2,則∠AOB的最小值為(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列an}的前n項(xiàng)和為Sn,若對(duì)任意的n∈N*,都有Sn=2n+n2+n-1,則a6=44.

查看答案和解析>>

同步練習(xí)冊(cè)答案