已知函數(shù)f(x)=(1+
1
tanx
)sin2x+msin(x+
π
4
)sin(x-
π
4
)

(1)當(dāng)m=0時,求函數(shù)f(x)在區(qū)間(
π
8
4
)
上的取值范圍;
(2)當(dāng)tanα=2時,f(α)=
6
5
,求m的值.
分析:(1)把m=0代入到f(x)中,然后分別利用同角三角函數(shù)間的基本關(guān)系、二倍角的正弦、余弦函數(shù)公式以及特殊角的三角函數(shù)值把f(x)化為一個角的正弦函數(shù),利用x的范圍求出此正弦函數(shù)角的范圍,根據(jù)角的范圍,利用正弦函數(shù)的圖象即可得到f(x)的值域;
(2)把f(x)的解析式利用二倍角的正弦、余弦函數(shù)公式及積化和差公式化簡得到關(guān)于sin2x和cos2x的式子,把x換成α,根據(jù)tanα的值,利用同角三角函數(shù)間的基本關(guān)系以及二倍角的正弦函數(shù)公式化簡求出sin2α和cos2α的值,把sin2α和cos2α的值代入到f(α)=
6
5
中得到關(guān)于m的方程,求出m的值即可.
解答:解:(1)當(dāng)m=0時,f(x)=(1+
cosx
sinx
)sin2x=sin2x+sinxcosx=
1-cos2x+sin2x
2
=
1
2
[
2
sin(2x-
π
4
)+1]
由已知x∈(
π
8
,
4
)
,f(x)的值域為(0,
1+
2
2

(2)∵f(x)=(1+
1
tanx
)sin2x+msin(x+
π
4
)sin(x-
π
4
)

=sin2x+sinxcosx+
m(cos
π
2
-cos2x)
2

=
1-cos2x
2
+
sin2x
2
-
mcos2x
2

=
1
2
[sin2x-(1+m)cos2x]+
1
2

f(α)=
6
5
,
∴f(α)=
1
2
[sin2α-(1+m)cos2α]+
1
2
=
6
5
  ①
當(dāng)tanα=2,得:sin2a=
2sinαcosα
sin2α+cos2α
=
2tanα
1+tan2α
=
4
5
,cos2α=-
3
5

代入①式,解得m=-
7
5
點評:考查三角函數(shù)的化簡、三角函數(shù)的圖象和性質(zhì)、已知三角函數(shù)值求值問題.依托三角函數(shù)化簡,考查函數(shù)值域,作為基本的知識交匯問題,考查基本三角函數(shù)變換,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案