【題目】數(shù)列滿(mǎn)足, .
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),數(shù)列的前項(xiàng)和為,對(duì)任意的, , 恒成立,求正數(shù)的取值范圍.
【答案】(1)證明見(jiàn)解析 (2)
【解析】試題分析:(1)根據(jù)等差數(shù)列的定義即可證明:數(shù)列是等差數(shù)列;
(2)利用錯(cuò)位相減法即可求數(shù)列{bn}的前n項(xiàng)和,利用作差法可得數(shù)列{}單調(diào)遞增, , 恒成立,只需即可.
試題解析:
解(1)證明:由已知可得=,
即=+1,即-=1.
∴數(shù)列是公差為1的等差數(shù)列.
(2)由(1)知=+(n-1)×1=n+1,
∴an=.
所以bn=,
Tn=+++…+,
Tn=+++…+.
兩式相減得
Tn=+2-,
Tn=+2×-,
Tn=1+4-=3-,
由Tn-Tn-1=3--=,
當(dāng)n≥2時(shí),Tn-Tn-1>0,所以數(shù)列{Tn}單調(diào)遞增.
最小為,
依題意上恒成立,
設(shè)
則
又解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若曲線(xiàn)在點(diǎn)處與直線(xiàn)相切,求的值;
(2)若函數(shù)有兩個(gè)零點(diǎn),,試判斷的符號(hào),并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的單調(diào)遞減函數(shù),對(duì)任意都有, .
(Ⅰ)判斷函數(shù)的奇偶性,并證明之;
(Ⅱ)若對(duì)任意,不等式(為常實(shí)數(shù))都成立,求的取值范圍;(Ⅲ)設(shè), , , , .
若 , ,比較的大小并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的值;
(2)若存在,使函數(shù)的圖像在點(diǎn)和點(diǎn)處的切線(xiàn)互相垂直,求的取值范圍;
(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),則是否存在實(shí)數(shù),使對(duì)任意的恒成立?若存在,求出的取值范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (、為常數(shù)).
(Ⅰ)求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)當(dāng)函數(shù)在處取得極值,求函數(shù)的解析式;
(Ⅲ)當(dāng)時(shí),設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為拋物線(xiàn): ()的焦點(diǎn),直線(xiàn): 交拋物線(xiàn)于, 兩點(diǎn).
(Ⅰ)當(dāng), 時(shí),求拋物線(xiàn)的方程;
(Ⅱ)過(guò)點(diǎn), 作拋物線(xiàn)的切線(xiàn), , 交點(diǎn)為,若直線(xiàn)與直線(xiàn)斜率之和為,求直線(xiàn)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三個(gè)頂點(diǎn)分別為是, , .
(Ⅰ)求邊上的高所在的直線(xiàn)方程;
(Ⅱ)求過(guò)點(diǎn)且在兩坐標(biāo)軸上的截距相等的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至處,此時(shí)測(cè)得其東北方向與它相距32海里的處有一外國(guó)船只,且島位于海監(jiān)船正東海里處.
(1)求此時(shí)該外國(guó)船只與島的距離;
(2)觀(guān)測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)8海里的速度沿正南方向航行,為了將該船攔截在離島24海里處,不讓其進(jìn)入島24海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓(xùn),特別組織了個(gè)專(zhuān)項(xiàng)的考試,成績(jī)統(tǒng)計(jì)如下:
第一項(xiàng) | 第二項(xiàng) | 第三項(xiàng) | 第四項(xiàng) | 第五項(xiàng) | |
甲的成績(jī) | |||||
乙的成績(jī) |
(1)根據(jù)有關(guān)統(tǒng)計(jì)知識(shí),回答問(wèn)題:若從甲、乙人中選出人參加新崗培訓(xùn),你認(rèn)為選誰(shuí)合適,請(qǐng)說(shuō)明理由;
(2)根據(jù)有關(guān)槪率知識(shí),解答以下問(wèn)題:
從甲、乙人的成績(jī)中各隨機(jī)抽取一個(gè),設(shè)抽到甲的成績(jī)?yōu)?/span>,抽到乙的成績(jī)?yōu)?/span>,用表示滿(mǎn)足條件的事件,求事件的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com