【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)x(個(gè))

2

3

4

5

加工的時(shí)間y(小時(shí))

2.5

3

4

4.5

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出y關(guān)于x的線性回歸方程;

(3)試預(yù)測加工10個(gè)零件需要多少時(shí)間.

參考公式:回歸直線,

其中

【答案】(1)見解析;(2);(3)8.05

【解析】

(1)根據(jù)題中的數(shù)據(jù)畫出散點(diǎn)圖即可.(2)由題中數(shù)據(jù)求得,然后結(jié)合給出的參考公式求得后可得線性回歸方程.(3)根據(jù)(2)中的方程進(jìn)行預(yù)測即可得到結(jié)論

(1)作出散點(diǎn)圖如下:

(2)由題意得

,

∴所求線性回歸方程為

(3)當(dāng)x=10,得(小時(shí)).

∴可預(yù)測加工10個(gè)零件大約需要8.05個(gè)小時(shí).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知傾斜角為135°且過點(diǎn)P(1,2)的直線l與曲線C交于M,N兩點(diǎn),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從6雙不同手套中,任取4只,

(1)恰有1雙配對的取法是多少?

(2)沒有1雙配對的取法是多少?

(3)至少有1雙配對的取法是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)準(zhǔn)備在開學(xué)時(shí)舉行一次高三年級(jí)優(yōu)秀學(xué)生座談會(huì),擬請20名來自本校高三(1)(2)(3)(4)班的學(xué)生參加,各班邀請的學(xué)生數(shù)如下表所示;

班級(jí)

高三(1)

高三(2)

高三(3)

高三(4)

人數(shù)

4

6

4

6

(1)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一班級(jí)的概率;

(2)從這20名學(xué)生中隨機(jī)選出3 名學(xué)生發(fā)言,設(shè)來自高三(3)的學(xué)生數(shù)為,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,且滿足(2c﹣b)tanB=btanA.
(1)求A的大;
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式|x+a|≤b的解集為[﹣6,2].
(1)求實(shí)數(shù)a,b的值;
(2)若實(shí)數(shù)m,n滿足|am+n|< ,|m﹣bn|< ,求證:|n|<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有5名男生、2名女生站成一排照相,

(1)兩女生要在兩端,有多少種不同的站法?

(2)兩名女生不相鄰,有多少種不同的站法?

(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為,直線經(jīng)過橢圓的右焦點(diǎn)與橢圓交于兩點(diǎn),且.

(I)求直線的方程;

(II)已知過右焦點(diǎn)的動(dòng)直線與橢圓交于不同兩點(diǎn),是否存在軸上一定點(diǎn),使?(為坐標(biāo)原點(diǎn))若存在,求出點(diǎn)的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex﹣2x.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=f(2x)﹣4bf(x),當(dāng)x>0時(shí),g(x)>0,求b的最大值;
(Ⅲ)已知1.4142< <1.4143,估計(jì)ln2的近似值(精確到0.001).

查看答案和解析>>

同步練習(xí)冊答案