【題目】如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N為AD的中點(diǎn).
(1)求異面直線PB與CD所成角的余弦值;
(2)點(diǎn)M在線段PC上且滿足,直線MN與平面PBC所成角的正弦值為,求實(shí)數(shù)的值.
【答案】(1);(2).
【解析】
以為空間坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系.
(1)利用向量法計(jì)算出異面直線與所成角的余弦值.
(2)由求得,結(jié)合平面的法向量,利用直線與平面所成角的正弦值列方程,解方程求得的值.
(1)因?yàn)?/span>平面,平面,所以,又因?yàn)?/span>,所以兩兩垂直.以為空間坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系.由,為的中點(diǎn),得,.所以,設(shè)異面直線與所稱的角的大小為,則.所以異面直線與所成角的余弦值為.
(2)設(shè)平面的法向量,因?yàn)?/span>,由得,取,得,所以.
因?yàn)?/span>,所以,所以.依題意,化簡得,解得或,由于在線段上,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定點(diǎn),常數(shù),動(dòng)點(diǎn),設(shè),,且.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)直線:與點(diǎn)的軌跡交于,兩點(diǎn),問是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書者進(jìn)行調(diào)查. 將他們的年齡分成6段:
,
后得到如圖所示的頻率分布直方圖,問:
(1)在40名讀書者中年齡分布在的人數(shù);
(2)估計(jì)40名讀書者年齡的平均數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元線性同余方程組問題最早可見于中國南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí),符合條件的共有( )
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,,已知有三個(gè)互不相等的零點(diǎn),且.
(Ⅰ)若.(ⅰ)討論的單調(diào)區(qū)間;(ⅱ)對(duì)任意的,都有成立,求的取值范圍;
(Ⅱ)若且,設(shè)函數(shù)在,處的切線分別為直線,,是直線,的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:某企業(yè)某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,從該企業(yè)生產(chǎn)的這種產(chǎn)品(數(shù)量很大)中抽取100件,測(cè)量這100件產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若取這100件產(chǎn)品指標(biāo)的平均值,從這種產(chǎn)品(數(shù)量很大)中任取3個(gè),求至少有1個(gè)落在區(qū)間的概率.
參考數(shù)據(jù):,若,則;;.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com